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Abstract - In this paper is proposed an algorithm of prediction fuzzy for chaotic time series. This 
approach has been select because, in presence of specific pathologies, biomedical data may be 
represented as a chaotic time series [1]. In particular, we are interested in monitoring the intracranial 
pressure (IP) of some patients in a state of coma who were suffering from intracranial hypertension 
syndrome. In these particular cases, prediction is necessary (from a diagnostic point of view) if you 
want to operate at the right moment on IP abnormal conditions. The proposed approach is based on a 
prediction multi-factor algorithm which doesn’t need the knowledge of the mathematical working 
model of the biologic phenomenon, translating the real time series into a fuzzy time series. 
 

I. Introduction 
 
Several studies have recently been carried out about intracranial pressure monitoring. They refer to 

both the instrumentation and the measurement techniques in data processing of biomedical data. As far 
as the instrumentation is concerned, a relatively recent technique consists in using an optical fibre 
internal probe to determine the alterations in light reflected by a pressure-sensitive diaphragm localized 
in the end point of the probe; it has showed its stability in laboratory sensing. Regarding the data 
processing we have followed a fuzzy logic approach. In this case fuzzy systems (as neural systems) are 
particularly indicated, as they are dynamics systems and are able to learn when trained. 

The inconvenient of traditional prediction methods is in their incapability to deal with problems in 
which historical data are represented by “linguistic values” (see [2]). We have so proposed a new 
multi-factor fuzzy (time variant) series model to overcome this difficulty. First of all we notice that our 
database just consists in a mono-dimensional vector. To make of some sense to apply the multi-factor 
algorithm, at least two time-series are necessary: the principal factor, on which we make our 
predictions, and the secondary factor. The basic idea is to get all the necessary information from 
intracranial pressure data, in order to be able to forecast the requested data. We have so thought to take 
the results of statistical calculation on data groups as secondary factors.   
 

II. Linguistic variables and fuzzy logic 
 

Fuzzy measures can be introduced for two different uses: either they can represent a concept 
imprecisely known (although well defined) or a concept which is vaguely perceived such as in the case 
of a linguistic variable ([3], [4]). In the first case they represent possible values, while in the second 
they are better understood as a continuous truth valuation (in the interval [0, 1]). To be more precise: 

- in the first case we associate a possibility distribution (an ordinal distribution of uncertainty) to 
classical logic formulas; 

- in the second case we have a multi-valued logic where the semantics allow values in the entire 
interval [0, 1]. 

We interpret a property as fuzzy if a precise measurement of this property can be obtained in 
principle. Many researchers interpret the term vagueness as a sub-category of fuzziness. They consider 
vagueness to be distinct from fuzziness. In contrast to fuzzy terms, we call those terms vague for which 
no measurement process can exist. In “People feel uncomfortable when it is hot” the term  “hot” is 
fuzzy, but “uncomfortable” is vague: we have no dependable way of measuring discomfort. Part of the 
research on uncertainty should be aimed at reducing vagueness by developing new measurement 
processes. 

Now we call linguistic variables all ones “whose values are not numbers, but words or sentences in a 
natural or artificial languages”. For example, the linguistic variable Intracranial Pressure is a linguistic 
variable with a Universe of Discourse, which is the range of numerical values it can assume. On a 
linguistic variable a term set T may be created: T= {very low, low, medium, high, very high}.  
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Linguistic expression are taken from natural language to emulate the human way of making a decision; 
a construction “IF antecedent THEN subsequent” is performed. But contrary to the classical logic 
(where logical predicates and rules have binary interpretation: a specific object satisfies a predicate or it 
does not) in fuzzy logic an object satisfies a predicate to some degree (fuzzification), and this is the 
concept of fuzzy number (see also [4] for more details). 

 
III. The proposed model 

 
The proposed model uses a prediction technique based on the fuzzification of difference estimation 

between successive intracranial pressure samples. It works as follows:  
 

( ) ( ) RtFtF o1−=                            ) 
where: 
 
 F (t-1) fuzzified data at  t-1; 
 F (t) data prediction at time t; 
 R fuzzy relations union; 
         o  Max-Min composition operator. 
 
Long time is necessary to compute the fuzzy relations union R, but the calcula

at all. 

A. Time series fuzzification  

Let’s assume y(t) (t=0,1,2,…) is a subset of R and let U be the Universe of D
G(t) (t=1,2,…) be two fuzzy time series on  y(t), where F(t)=⎨ µ11(t), µ12(t),…
µ21(t), µ22(t),…, µ2n(t)⎬ and µ1i and  µ2i are two fuzzy sets on y(t), for  1 ≤ i ≤ 

If we want to foresee F(t) and to use G(t) to improve the prediction on F(t), 
respectively called principal factor fuzzy time series and secondary factor fuzzy t

We can describe the fuzzified variation f(t) (between time t and t-1) of princ
F(t) and assume that the Universe of Discourse U has been divided into m inte
u2,…,um). Let’s assume there are k linguistic terms (A1, A2,…, Ak), which a
sets Ai; the maximum membership value of Ai is verified in  ui interval and  1
difference between the  historical data at time t and t-1 and x∈ui, the fuzzifie
where 1 ≤  i ≤  k, that is f(t)=[ µ Ai (u1)  µ Ai (u2)  …  µ Ai (um)] . 

Analogously, the historical data of secondary factor fuzzy time series g
assuming there are k linguistic terms (for example B1, B2,…,Bk) represented by 

 
B1=µ B1 (u1)/ u1+µ B1 (u2)/u2+…+µ B1(um)/um 
B2=µ B2 (u1)/ u1+µ B2 (u2)/u2+…+µ B2(um)/um 
... 
Bk=µ Bk (u1)/ u1+µ Bk (u2)/u2+…+µ Bk(um)/um 

B. Data prediction analysis 

To foresee data at time t we have to define the width w of an observation win
define the criterion matrix C(t) and the operative matrix  Ow(t), expressed as: 

C(t)=f(t-1)=[C1 C2 … Cm] 
 

( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−
−

=

−−− mwww

m

m

w

OOO

OO
OOO

f(t-w)

tf
tf

tO

)1(2)1(11)1(

22221

11211

     ...         
.                        .               .   
.                        .               .   
.                        .               .   
O       ...                     

       ...                      

.    

.    

.    
)3(
)2(

 
 

 

  (1
tion is performed once 

iscourse. Let F(t) and 
, µ1n(t)⎬ and G(t)=⎨ 

n. 
then F(t) and G(t) are 
ime series. 
ipal factor time series 
rvals (for example u1, 
re described by fuzzy 
 ≤  i ≤  k. If x is the 
d variation f(t) is Ai, 

(t) may be described 
fuzzy sets, as follows: 

dow [2]. Then we can 

       

) 
(2
 



where f(t-1) is the fuzzified variation at time (t-1); m is the elements numbers of the Universe of 
Discourse; Cj and Oij :   

 
0 ≤  Cj ≤ 1,  0 ≤  Oij ≤1,               1 ≤  i ≤ w-1,  1 ≤  j ≤ m. 

 
Following [1] we define the secondary factor fuzzy vector, as S(t)=g(t-1)=[S1   S2  ... Sm],  Si ∈[0,1] 

with  1≤  i ≤m and g(t-1) represents the fuzzified data of G(t) at time (t-1). 
Now we have to decide the fuzzy relationship among the criterion vector, the operative matrix and 

the secondary factor vector.  The fuzzy relationship matrix R(t) is R(t)= Ow(t) ⊗ C(t), that is:  
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where Rij= Oij x Sj x Cj   1 ≤  i ≤ w-1  ,  1 ≤  j ≤ m. The forecasted fuzzified variation f(
f(t)=[Max(R11,…,R(w-1)1)…Max(R1m,…,R(w-1)m)] 

The algorithm complexity is dominated by the computation of  R(t)= Ow(t)⊗S(t)⊗C(t); it’s a O(
complexity. We propose to use more than a single secondary factor to improve the capability in 
prediction. 

 
IV. Experimental results 

 
Several experimental tests have been performed monitoring intracranial pressure on some a

patients who were suffering from intracranial hypertension syndrome. 
In a first time we have used no-filtered data. The Universe of Discourse U= [DL-D1,DR+

where D2 and D1 are two positive real numbers, DR and DL are respectively the maximum incr
and the minimum decrease (valued between every sample and the next one). We have chos
partitions on U, so to obtain 7 equi-spaced intervals: u1…u7. Let’s define these fuzzy sets (expre
linguistic terms): 

 
A1=(very big decrease) 
A2=( big decrease) 
A3=(decrease) 
A4=(no variation) 
A5=(increase) 
A6=(big increase) 
A7=(very big increase) 
 

To fuzzify these linguistic expressions, it is sufficient to translate them in terms of member
functions, according to the fuzzy sets theory: 
 
A1=1/ u1+0.5/ u2+0/ u3+0/ u4+0/ u5+0/ u6+0/ u7 
A2=0.5/ u1+1/ u2+0.5/ u3+0/ u4+0/ u5+0/ u6+0/ u7 
A3=0/ u1+0.5/ u2+1/ u3+0.5/ u4+0/ u5+0/ u6+0/ u7 
A4=0/ u1+0/ u2+0.5/ u3+1/ u4+0.5/ u5+0/ u6+0/ u7 
A5=0/ u1+0/ u2+0/ u3+0.5/ u4+1/ u5+0.5/ u6+0/ u7 
A6=0/ u1+0/ u2+0/ u3+0/ u4+0.5/ u5+1/ u6+0.5/ u7 
A7=0/ u1+0/ u2+0/ u3+0/ u4+0/ u5+0.5/ u6+1/ u7. 
 

The secondary factor time series is constituted by  the standard deviation computed data gr
which cover the temporal interval of two seconds (for example). 
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Figure 1. Historical (black) and forecasted (grey) data representation. 

 
The secondary factor time series is constituted by  the standard deviation computed data groups 

which cover the temporal interval of two seconds (for example). 
As the secondary factor is concerned, we can define the following linguistic expressions: 
 

B1=B7=(very big standard deviation); 
B2=B6=( big standard deviation); 
B3=B5=(discrete standard deviation); 
B4=(no standard deviation); 
 
bearing in mind that Bi has to imply Ai. 

In the preliminary inspection, we have seen that a big increase or decrease (big variations) 
corresponds to a large value in standard deviation. In terms of membership functions: 
 
B1=0/ u1+0/ u2+0/ u3+0.5/ u4+1/ u5+1/ u6+1/ u7 
B2=0/ u1+0/ u2+0.5/ u3+1/ u4+1/ u5+1/ u6+1/ u7 
B3=0/ u1+0.5/ u2+1/ u3+1/ u4+1/ u5+0.5/ u6+0/ u7 
B4=1/ u1+0.5/ u2+0/ u3+0/ u4+0/ u5+0/ u6+0/ u7 
B5=0/ u1+0.5/ u2+1/ u3+1/ u4+1/ u5+0.5/ u6+0/ u7 
B6=0/ u1+0/ u2+0.5/ u3+1/ u4+1/ u5+1/ u6+1/ u7 
B7=0/ u1+0/ u2+0/ u3+0.5/ u4+1/ u5+1/ u6+1/ u7 
 

In Fig. 1 are reported the real data and the forecasted data. The real data have been acquired with a 
sampling time of 80 ms for a window of four hours. To evaluate the predictions goodness we take into 
consideration the root mean square error value. Since the cardiac and respiratory activity (the patient is 
under drug effect) can produce a disturbance on the Intracranial Pressure signal, a filtering step is 
necessary. In Fig. 2 are reported the spectra of the real and the filtered signal. After the filtering activity 
we repeat the analysis and respect the first result there is an improvement of the root mean square error. 

 It’s obvious that a lonely secondary factor based on variance calculus has not a great credibility, so 
to obtain a further improvement of the prediction algorithm performances, it’s necessary the secondary 
factor is a multi-parameter statistical variable, jointly defined on average, variance, and kurtosis values.  

 
The problem is to define with precision the fuzzy rules: they become more complicated and surely 

less intuitive. Using three statistical parameters we obtain a further improvement in the accuracy of 
prediction algorithm, but we increment the complexity in constructing our model. We had to build 3 
matrixes, each of which presents in the position (i, j) the membership degree of the jth partition of the 
universe of discourse U to the ith fuzzy set. In phase of construction of the matrix R, we will use the 
usual method of max-prod composition, as  already seen (for more details about the operations on 
fuzzy numbers, see [5]-[8]). 

This approach makes possible a further reduction of the root mean square error value. 
 

 



  

Figure 2 .  Noisy (black) and filtered (grey) signal FFT. 
 
 

V. Conclusions 
 

In this paper we have proposed a new technique of prediction on sequences of biomedical 
measurement data. The proposed approach is based on a prediction multi-factor algorithm which 
doesn’t need the knowledge of the mathematical working model of the biologic phenomenon. This 
technique is obtained translating the real time series into a fuzzy time series: it represents a faster and 
easier way to predict a development of biomedical phenomena with a very low computational cost. 

 The proposed approach is of great interest when we can find two or more secondary biological 
factors influencing the intracranial pressure, and so the use of statistical parameters is not necessary and 
the knowledge of an expert is sufficient to build a discrete numer of simple rules. 
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