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Abstract—Tool wear monitoring requires excellent 

capabilities of detecting small defects within the item 

under test. Diverse techniques have been using to detect 

the effect of vibrations on a tool, hence on material. The 

paper presents an EMD (empirical mode decomposition) 

approach for point out the effect of vibrations for a tool 

under machining in industrial process. EMD exhibits 

good results in processing some signals and simplicity in 

its use.  

Keyswords— Empirical mode decomposition, signal 

processing, vibration measurement, environmental 

measurements. 

1. INTRODUCTION 

Material removal machining remains most important 
manufacturing process and is used most in mechanical 
industry in a wide range of aerospace applications to the 
automotive industry. The state of tool and its service life are 
critical to   machining cost.  Use of a vibration generating 
machine depends on quality of surface condition,  
dimensional accuracy  of machined parts, and production 
time. 

 

Fig.1. An example of item under machining 

Monitoring tool wear is a more complex task. Many papers 

have been proposed to use different types of signals resulting 

from machining, such as: cutting forces, emission acoustics 

and vibrations, and have proved their effectiveness and their 

ability to monitor the wear of tools. Work using signal 

processing techniques was conducted by Ramili et al [1]. 

focuses on the treatment of the vibratory signature by 

machining. The ranking and prediction of the state of the tool 

 with the input data of one or more sensors and network 

architectures of neurons have been studied.  The wavelet 

transform is considered as one of the best. However, the 

wavelet transform still has some unavoidable shortcomings, 

including the terms of interference, distortion of the border 

and energy leakage, all of which will generate a lot of small 

unwanted spikes throughout the frequency scales and make 

the results confusing and difficult to interpret.  Therefore, 

new methods are needed to analysis the data from non-linear 

and non-stationary processes such as drilling, turning, etc. In 

1998 a new frequency-time method called empirical mode 

decomposition (EMD) was proposed by Huang [2]. 

Monitoring of wear of cutting tool during these three phases 

of life. This analysis aims to demonstrate if there is a 

relationship between evolution of wear and measured 

quantities (vibrations) during machining and extract the  

relevant indicators. Fig.1 shows the trend of failure rate along 

the time. 

 
Fig.2. Bathtub curve for failure analysis 

Instead, damages are caused by three factors: (i) abrasion 

which is subsequent to the removal of material on the tool by 

hard constituents in the machined material; (ii) adhesion, this 

wear is also caused by the tearing of particles using a tool, 

after micro strain in the chip and in the tool; (iii) broadcast: 

the broadcast wear automatically appears. Fig.2 depicts the 

damage mechanism that certainly influences the cutting tool 

operating mode.  The life of the cutting tool is mainly 

constrained by the development of three types of wear: flank 

wear, crater wear and nose wear. 
 



 
Fig.2. Damage mechanism 

Flank is a friction between side of cutting-tool edge and 

metal being machined. Crater wear takes place as a 

consequence of chips sliding along chip-tool interface. Nose 

wear is caused by friction between nose and metal being 

machined. According to ISO 8688 [3], the tool life is defined 

as:” the total cutting time of the tool to reach a specified 

value of life criterion”. The flank wear, under normal 

machining conditions, is considered to be predominant wear.  

Following ISO 3685 [4] and NF E 66-505 [5], the accepted 

wear width, called Vb, is equal to 0.3 mm. If no, the 

allowable limit 0.6 mm. For the scope of this work the have 

set the limit at 0.3 mm.  

 

2.  EMPIRICAL MODE DECOMPOSITION 

Empirical Mode Decomposition (EMD) has been introduced 

by Huang et al. [6] to nonlinear and non-stationary time 

series. Like Wavelet Analysis, EMD attempts to decompose 

a time series into individual components (intrinsic 

oscillations) by exploiting both local temporal and structural 

characteristics of the data. EMD achieved through a linear 

sum of the components that approximates the original ECG 

signal. In this work, EMD on univariate time series has been 

examined. However, recently, a multivariate version of the 

EMD (MEMD) has been successfully proposed [7]. The 

starting point of EMD is to locally estimate a signal as a sum 

of a local trend and a detail signal component: the local trend 

is a low frequency part, and the local detail accounts for high 

frequencies. In EMD, the high-frequency (detail) 

components are referred to as Intrinsic Mode Function (IMF) 

and the low frequency part is called residual. The procedure 

is then applied again to the residual, considered as a new 

times series, extracting a new IMF and a new residual. 

 
Table I Comparison among different techniques 

 
EMD is not the only technique that can be used for activities 

of this research. Table I illustrates an EMD comparison with 

other techniques used for monitoring tool wear; Fourier and 

STFT belong to the same category as transforms to be used 

in many applications with no high complications. Wavelet is 

also interesting since it can allows to overcome some general 

limitations of Fourier and STFT in the cases of specific 

applications. 

3.  EXPERIMENTATION AND ALGORITHM 

The machining tests were carried out at the mechanical 
workshop ISTA on a classic HYDROGALLIC brand lathe, it 
carries a two-speed Siemens motor with 10 HP power  
supplied, The material chosen is a hard steel, and the 
dimensions of the machined  cylinder are 300 mm in length 
and 50 in diameter we have used the tools in plate and the 
monoblock in metal carbide. 

 
Fig.3. Lathe used for experimental activities 

A set of sensors is used (Fig.4); in particular, an 

accelerometer is fixed on the turret to measure the vibration 

responses in the cutting tool along the machine axis : The 

measurement of the accelerometer signals during machining 

was performed using an acquisition chain composed of a 

mono-axial  piezoelectric accelerometer type and a National 

Instrument (NI) acquisition system  including the Compact 

DAQ on which we mounted the 9233 module for the 

conditioning  of these signals is controlled by the LabVIEW 

software which allowed us to program  the acquisition 

interface, the sampling frequency was 25000 Hz, and the 

number of samples 250000 so we recorded responses 

generated during machining in its entirety. 

 

 

 
Fig.4. Acquisition chain from tool to acquired signal 

The IMFs (Intrinsic Mode Function) are mathematically 

subject to two conditions: 

a) in the whole data set, the number of extrema and zero 

crossing must be equal or differ at most by one; 

b) at any point the mean value of the envelope defined by 

the local maxima and the envelope defined by the local 

minima must be zero. 



The aforementioned conditions are empirical and there is no 

any explicit formula for estimating IMFs. Given the analysis 

of the power spectrum of IMFs, as it will be shown, it is 

possible to verify that these functions represent the original 

signal decomposed into different time-scales or frequency 

bandwidths. Given a signal x(t), the general algorithm of 

EMD can be summarized as follows  [8]: 

1. identify all extrema (minima and maxima) of x(t); 

2. generate the upper and lower envelope (emin(t), emax (t)) 
by connecting the maxima and minima points separately 

with cubic spline; 

3. compute the local mean r (t) = (emin(t) + emax (t))/2; 

4. extract the detail d(t) = x(t) − r (t); 

5. iterate on the residual r (t). 

At the end of the decomposition process, the EMD method 

exhibits the signal x(t) as the sum of a finite number of 

IMFs and a final residual [9]: 
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where hi (t) are the IMFs and rn(t) is a final residual, which 

is less than an arbitrarily chosen threshold. The algorithm 

works iteratively by identifying the extrema of the signal and 

breaking it down thus ensuring that the number of modes is 

finite. The envelope is estimated by interpolating the 

extrema of the signal at each iteration. The EMD algorithm 

needs to be focused on both the choice of the extrema, in 

order to avoid over-sampling issues, and the boundary 

conditions for the analysis of discrete time sequences. The 

effective algorithm used is this paper is illustrated in Fig.5.  

 

 
 

Fig.5. Proposed algorithm for EMD connected to wear detection 

4.  PRESENTATION OF RESULTS 

The results below show the application of the algorithm 

to detect the tool wear in three specific cases in order to 

illustrate that EMD is a powerful algorithm in the field of 

signal processing. The three cases are the followings: new 

tool without wear, low tool wear, and high level-based tool 

wear.  We start with the first case as a reference case of the 

same tool to be used in the other two.  Fig.6 depicts 6 IMFs 

extracted from the signal processing along with the residue. 

 

 
Fig.6. EMD application for new tool 

Attention must be paid on the original signal, IMF1, and 

IMF2 at time set for 1.5. Their behavior is the same, no 

specific changes are observed. This is a first indication of 

material homogeneity, that means new tool without wear.  

 

 
Fig. 7. EMD application for low tool wear 

For low tool wear, according to Fig.7, the original feature, 

with peak at time set for 1.5, is not the same for IMF1, and 

IMF2. But the residue exhibits a maximum close to 1.5 as 

times. This is a typical behavior of low vibrations, then low 

tool wear. Moreover, the IMF4 shows more oscillations than 

the case of new tool without wear. Concerning the last case, 

high level-based tool wear, reported in Fig.8, beyond the 

reactions of IMF1, IMF2, we can see that IMF5 displays 

many oscillations than the previous two cases. It means that 

a major level of wear. The residue is totally different. 

 

 
Fig. 8. EMD application for high level-based tool wear 

The three examples show that different behaviors are 

encountered for each case, that is, no wear, low wear, and 

high wear. For each case, we get a specific signature in terms 

of oscillations, and residue. 



5.  CONCLUSION AND FINAL OUTLOOK 

In this work, the relationship between the change in the 

amplitude of the tool delivering its signal and the side of the 

tool wear have been studied during the turning process with 

metal carbide piece.  Signals emitted by vibratory tool for 

three different wear conditions of the side of the tool have 

been experimentally studied and analyzed using Hilbert-

Huang Transform (HHT). It has been found that the 

magnitudes of some relevant IMF statistics issued tool 

components wear on the sidewalls of the tool decreases. The 

results of the survey confirm that HHT is based on sound 

signal analysis, and can be applied with confidence to 

monitor wear on the sidewall of the tool. Spectral estimate is 

a key approach insofar as any technique we have to adopt , 

as reported in Table 1, should take into account the concept 

of maxima and minima [10] [11]. The approach proposed 

can be included in CPS (cyber-physical system) vision [12] 

to be used in networking. 
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