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Abstract – This paper is a section of several preliminary 
studies of the Underwater Drones Group of the 
Università degli Studi “Roma Tre” Science 
Department. We describe the architecture and features 
of the Medusa as "quasi-Lagrangian" AUV and its 
“dual use”: a simple emerging buoy or a sub glider. 
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 I. INTRODUCTION 
This paper is part of several preliminary studies of the 

Underwater Drones Group of the science department of the 
Università degli Studi “Roma Tre”, which is developing an 
advanced AUV (Autonomous Underwater Vehicle) for the 
exploration of the sea at high depths. The final aim is to 
create a platform for underwater scientific research that 
can accommodate a wide range of different payloads [1]-
[3]. 

 

 
Fig. 1. Medusa II – Prospective view 

 
Medusa Mk. II (Mediterranean Underwater Submersible 

Autonomous vehicle – see Fig.1) is a sub glider. The name 
Medusa comes from a figure from Greek mythology. 
Together with Steno and Euryale, she is one of the three 
Gorgons, daughters of the marine divinities Forco and 
Ceto. According to the myth the Gorgons had the power to 
petrify anyone who had met their gaze and, of the three, 
Medusa was the only one who was not immortal. in most 
versions it was beheaded by Perseus who brought with him 

the head of Medusa, who had not lost her power to petrify 
with her eyes, and used it as a weapon against numerous 
other adversaries and enemies [4]-[9]. 

 
The system can be considered as "quasi-Lagrangian" 

because, like the system ALACE (see), it is possible to use 
it as a simple emerging buoy and capable of a variable 
depth: it essentially includes the whole mission profile of 
the mentioned system. Furthermore, the innovation lies in 
the fact that, with very little expenditure in terms of energy, 
it can also be moved to the horizontal plane, compensating 
for currents and drifts, thus having the possibility of 
changing the mission and purpose until the end. Not least 
the possibility of being able to conduct an active 
"volumetric" exploration of a stretch of sea [10]-[16]. 

 
The fundamental element of the Medusa Mk. II is the 

profiling float, which controls buoyancy to surface 
periodically, transmits data and localizes via satellite, and 
returns to the sea depths [17]. 

A sub glider is essentially a float with wings to provide 
lift and allow it to move horizontally while profiling. 
Gliders are the natural next step in the development of 
autonomous float technology [18]-[21]. 

The wing has the task of transforming the descending 
motion into translational motion, allowing the vehicle to 
advance in a longitudinal direction. Its annular shape has 
the dual purpose of offering a low resistance to 
advancement and, at the moment, when it is lifted by the 
support vessel, a sort of "bumper" which prevents damage 
to the fuselage [22]. 

 II. MEDUSA ARCHITECTURE 
As Fig. 2 shows, the Medusa is a tailless sub glider: the 

cylindrical fuselage (hull) has a constant section (20 mm 
external diameter approx.), with an elliptical dome on the 
nose and a hydrodynamic fairing in the tail [23].  

The fuselage (hull) is made out of Aluminium 6061-T6: 
it has excellent joining characteristics, good acceptance of 
applied coatings and combines relatively high strength, 
good workability and high resistance to corrosion [24]-
[27]. 

The annular wings are made of Ultem 1000 
(Polyetherimide high-density polymer) has a high 
dielectric strength, inherent flame resistance and 
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extremely low smoke generation; furthermore, it has high 
mechanical properties and performs in continuous use to 
170 °C [28]-[31]. 

 

 
Fig. 2. Medusa II – Fuselage section (cutaway). 

 A. Payload Section 
The nose cone is spherical and contains the 

(customizable) payload and the ancillary systems. The 
front section (up to the first bulkhead) is all an empty space 
that can be filled with all the instrumentation needed up to 
a diameter (see fig. 3). This peculiar radome allows 
accommodating many type of electromechanical sensor. If 
an active sonar is required, an appropriate version of the 
radome is available [32]-[37].  

The second part of the section accommodates all the 
ancillary services such as payload power packs, thermal 
control, and other instrumentation recording and storage 
devices. 

 

 
Fig. 3. Medusa II – cutaway of payload and navigation 
section. 

 B. Navigation Section:  
contains the Glider Integrated Control System (GICS), 

the INS (Inertial Navigation System) platform). The GICS 

oversees all the functions of navigation, guidance and 
vehicle control [38]. In the run-up phase, the AUV receives 
its position via Global Navigation Satellite System-GNSS 
(which cannot be done if immersed), and connects itself to 
the Iridium communication satellite system, provides its 
own position to the user and downloads the navigation or 
payload. Then, if necessary, it gets new program parts and 
runs them [39].  

 C. Battery Section  
It contains the battery pack (see fig. 4) and the 

servomotors to trim and regulate pitch and heading (yaw) 
of the AUV. The batteries are mounted on a special support 
(cradle) and actuated by servomotors (controlled by the 
OBC) that allow the forward/backward scrolling (for pitch 
control) but also the right/left tilt for intrinsic direction 
control [40]. 

 D. Hydrodynamic Tail and Communication Pod 
 The hydrodynamic tail contains the oil bladder, is open 

to the water and provides a slender shape. The fairing has 
the task of not disturbing the hydrodynamic flow of the 
fuselage and closing the fuselage in closure [41]. In any 
case, it can withstand considerable loads: for this reason, 
there are several internal struts reinforcements. It also 
protects the bladder from the flow and its dynamic loads, 
which could deform it [42]. 

The communication pod contains the radio 
communication systems: Global Positioning System-GPS, 
Iridium RTx and HF emergency beacon. 

In case of recovery from the support ship there is a 
flashing light beacon and a radio beacon in HF band to 
facilitate homing [43]. 

 

 
Fig. 4. Medusa II – cutaway of battery and buoyancy 
section and the communications pod. 

 E. Buoyancy Section 
In order to reduce the force required to actuate the oil 

piston, which pushes the oil in the bladder at high depth, is 
necessary to reduce the piston surface (diameter) and 
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increase the stroke. So, the buoyancy engine resembles to 
a “shotgun” [44] . 

The evaluation of the buoyancy of the drone is made 
considering the buoyancy of the naked glider (as a rigid 
body) and the variable component due to the bladder and 
the buoyancy motor. So, the total buoyancy force on the 
glider is: 

 
 (1) 

where: 
 Net total “weight” in the water 

 Dry Weight of the vehicle 

 Buoyancy of the oil bladder. 

 Buoyancy of the naked vehicle. 
For the balance of the forces on the Z axis we have: 
 

 
(2) 

where: 
= weight of the battery pack. 

  weight of the oil tank. 

 weight of the naked glider. 
So the expression of the buoyancy force is: 
 

 
(3) 

 F. Wing Description 
The aerofoil is type NACA 16-1013 (see Fig. 4): it was 

intended for use at high Reynolds’ numbers; the foil is 
optimized for use as a hydrofoil wing and at low speeds of 
the AUV expresses its best lift/drag rate. 

  

 
 
Fig. 5. NACA 16-1013 Flow field (Re=106, AoA=5°) 

The choice of such a thick profile is due to two factors: 
first, the wing is subjected to considerable loads due to the 
peculiar annular geometry.  

The second is that in such a thick section it is possible to 
accommodate a hollow tubular aluminium spar, which 
increases flexural rigidity. In fig. 5, the aerofoil flow field 
is shown. 

In Fig. 6, the general arrangement of the annular wing is 
shown. 

 

Fig. 6. Medusa II – Front view 

 III. CONCLUSIONS 
This paper is part of several preliminary studies of the 

Underwater Drones Group of the science department of the 
Università degli Studi “Roma Tre”, which is developing 
an advanced AUV (Autonomous Underwater Vehicle) for 
the exploration of the sea that is a high depths platform for 
underwater scientific research that can accommodate a 
wide range of different payloads. We have highlighted the 
general architecture of the UAV and the internal 
arrangement in order to optimize the space dedicated to the 
payload (which can be appropriately customized). In 
addition, we have illustrated the main parameters of the 
forces at play inherent to navigation and buoyancy, 
choosing an appropriate hydrofoil (NACA 16-1013). 
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