
1 of 6 

IMEKO 24th TC3, 14th TC5, 6th TC16 and 5th TC22 International Conference 

11 – 13 October 2022, Cavtat-Dubrovnik, Croatia 

 

DIGITAL REPRESENTATION OF A LOAD CELL 
 

C. L. Giusca1, S. Goel2, I. Llavori3, R. Kumme4, O. Baer5, A. Prato6, A. Germak7 

 

Cranfield University, Cranfield, Bedfordshire, United Kingdom, 1 c.giusca@cranfield.ac.uk 

London South Bank University, London, United Kingdom, 2 goels@lsbu.ac.uk 

Mondragon Unibertsitatea, Mondragón, Spain, 3 illavori@mondragon.edu 

Physikalisch-Technische Bundesanstalt, Braunschweig, Germany 
4 rolf.kumme@ptb.de, 5 oksana.baer@ptb.de 

INRiM – National Institute of Metrological Research, Turin, Italy 
6 a.prato@inrim.it, 7 a.germak@inrim.it 

 

Abstract: 

Industry 4.0 (I4.0) revolution provides new 

avalanche of opportunities in the arena of 

manufacturing and metrology. To take advantage of 

this opportunity, EMRP 18SIB08 ComTraForce 

project began the development of digital constructs 

necessary for a Digital Twin of a load cell that 

allows, in real time, to predict, optimise and 

maintain desired functionality throughout the 

device lifetime. Specifically, its project team has 

been working on developing digital constructs 

based on experimentally validated finite element 

models in conjunction with analytical models. The 

work provides new avenues in establishing force 

measurement standards. 

Keywords: force; traceability; digital twin; load 

cell; finite element modelling 

1. INTRODUCTION 

Load cell measurements are affected by a variety 

of error sources, and it is envisaged that the 

development of a digital twin (DT) [1] of the load 

cell in the I4.0 context [2] can help with reliability 

and accuracy of the measurements. To achieve this, 

comprehensive digital constructs of the load cell, 

which go beyond measurement uncertainty 

estimations based on simple measurement models, 

are required. The development of finite element 

models (FEM) is pivotal to understand the load cell 

behaviour under cyclic measurement conditions and, 

subsequently, to establish the effect of creep or 

fatigue on the output of load cells. 

Here we present the initial stages of FEM 

construction of a 20 kN load cell. The detailed 

design of the load cell is described elsewhere [3]. 

This paper focuses mainly on the development of 

the DT constructs. The results obtained from 

ABAQUS [4] FEA static implicit solver and an 

analytical solution were compared with the 

calibration data of the sensor in accordance with the 

ISO 376:2011 [5]. 

2. DESCRIPTION OF THE WORK 

Figure 1 presents a schematic drawing of the load 

cell, relative position of the strain gauges (force and 

bending) and temperature sensor, as well as typical 

boundary condition used in ABAQUS. 

 

Figure 1: Left - Load cell schematic and the nominal 

position of the strain gauges. Right - ABAQUS boundary 

conditions example 

Four strain gauges measuring the longitudinal 

(L) and transversal (T) strains were connected in a 

Wheatstone bridge configuration as shown in 

Figure 2. The four strain gauges were mounted at 

90° to each other on the body of the dynamometer. 

 

Figure 2: Wheatstone bridge configuration of the strain 

gauges used for the force measuring setup: S - source, M 

- measurement 
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The longitudinal and transversal strain 

measurements correspond to axial 𝜀
Y  and radial 

strain 𝜀R, respectively. As such, the millivolt per volt 

output of the bridge (𝐼 ) can be expressed using 

equation (1): 

𝐼 = 1000 × 

(
𝑅1L + 𝑅3L

𝑅1L + 𝑅3L + 𝑅1T + 𝑅3T

−
𝑅2T + 𝑅4T

𝑅2L + 𝑅4L + 𝑅2T + 𝑅4T
) 

(1) 

On the basis that the resistance (𝑅) of the strain 

gauge is equal to: 

𝑅 = 𝑅0(1 + 𝑘𝜀) (2) 

where 𝑅0  is the nominal value of the sensor 

resistance and 𝑘 is the gauge factor. 

The equivalent analytical solution to the 

equation (1) is given by: 

𝐼 = 1000 ×
𝑘𝜀(1 + )

2 + 𝑘𝜀(1 − )
 (3) 

where   is the Poisson’s ratio and 𝜀  is the 

analytical axial (longitudinal) strain, which can be 

calculated as: 

𝜀 =
4𝐹

𝐸𝑑2
 (4) 

where 𝐹  is the applied force, 𝐸  is the Young’s 

modulus and 𝑑 is the diameter of the dynamometer. 

2.1. Dynamometer Meshing and Data 

Processing 

Figure 3 shows the meshing conditions of the 

dynamometer in ABAQUS. The FEM simulations 

were run with a 2.5 mm distance between nodes 

(white circles in Figure 3 left). A 10-node modified 

quadratic tetrahedron (C3D10M) element was used 

in this study and implicit analysis was chosen. The 

2.5 mm distance between the nodes was selected to 

provide optimal execution time on a desktop 

computer. An additional simulation was performed 

by considering the distance between the nodes as 

1 mm. 

The dynamometer had the properties of a steel 

alloy: Young’s modulus 200 GPa and Poisson’s 

ratio 0.3. 

To help with the ease of data collection and 

postprocessing, the surface of the central part 

dynamometer on which the strain gauges were 

mounted was seeded in such way that includes 30 

elements (here defined as the space between two 

seeds) in the axial direction and 36 

circumferentially (in Figure 3 the surface edge 

seeds are represented by the purple triangles). This 

configuration of surface seeds allows to collect the 

spatial displacements (𝑈1 , 𝑈2 , 𝑈3 ) at the surface 

nodes in all three orthogonal directions (X, Y, Z) 

and their associated positions (in mm), at every 

1 mm (nominally) along the axis of the 

dynamometer and 10° radially (or every 1 mm 

nominally) along the circumference, hence a set of 

36 × 31 (1116) surface nodes. 

Figure 3 right presents the ABAQUS meshing 

result of the dynamometer. Worth mentioning that 

that the size of the strain gauges is larger than the 

distance between surface nodes (a ratio 

approximately of 2:1), however, denser sampling 

can be used to characterise in more detail the 

dynamometer response.  

 
Figure 3: Example of seeding (left) and meshing (right) 

of the dynamometer 

The data was collected along a path that included 

the surface nodes starting with the top radial data 

and gradually going down along axial direction of 

the dynamometer and stored in an Excel file (.xls), 

which was imported in MATLAB (version R2021b 

Update3) for further processing and analysis. The 

FEM spatial displacement results stored in the excel 

files comprised of 6 × (𝑛  +1) columns and 1116 

rows, 𝑛  representing the number of loading 

increments and “+1” to allow storing the data 

representing the un-loaded state of the 

dynamometer (0 N). 

A diagrammatic indication of the surface nodes 

of the dynamometer is presented in Figure 4. 

 
Figure 4: Diagrammatic indication of the surface nodes 

position on the body of the dynamometer 
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The longitudinal strain (εL,(𝑖,𝑗)) - i.e. in the axial 

direction - of a surface between four adjacent 

surface nodes was calculated using equation (5). 

εL,(𝑖,𝑗) =
𝑈2,(𝑖,𝑗+1) − 𝑈2,(𝑖,𝑗)

∆𝑌
 

  
(5) 

where ∆𝑌 is nominal axial distance between these 

two axial nodes, and indices i and j range from 1 to 

the number of nodes sampled on the circumference 

(36) and axial number of nodes less 1 (30), 

respectively. 

At each surface node, the radial strain was 

calculated as the ratio between the square root of the 

quadratic sum of the node’s displacements along the 

X and Z direction, 𝑈1 and 𝑈3 respectively, and the 

diameter of the dynamometer, as shown in 

equation (6). 

εR,(𝑖,𝑗) =
2 × √𝑈1,(𝑖,𝑗)

2 + 𝑈3,(𝑖,𝑗)
2

𝑑
 (6) 

where 𝑖 and 𝑗 range from 1 to the number of nodes 

sampled on the circumference (36) and axially (31), 

respectively. 

The transversal strain (εT,(𝑖,𝑗) ) was calculated 

using equation (7). 

εT,(𝑖,𝑗) =
εR,(𝑖,𝑗+1) + εR,(𝑖,𝑗)

2
  (7) 

where indices 𝑖 and 𝑗 range from 1 to 36 and from 

1 to 30, respectively. 

In the following step, equation (1) was used to 

derive the equivalent mV/V bridge output using the 

FEM ( 𝐼FEM ) longitudinal and transversal strain 

results. 

𝐼FEM = 1000 × 

[
2 + 𝑘(εL,(𝑖,𝑗) + εL,(𝑖,𝑗+18))

4 + 𝑘(εL,(𝑖,𝑗) + εL,(𝑖,𝑗+18) + εT,(𝑖,𝑗) + εT,(𝑖,𝑗+18))

−
2 + 𝑘(εT,(𝑖,𝑗+9) + εT,(𝑖,𝑗+25))

4 + 𝑘(εL,(𝑖,𝑗+9) + εL,(𝑖,𝑗+25) + εT,(𝑖,𝑗+9) + εT,(𝑖,𝑗+25))
] 

(8) 

2.2. Strain Gauge Meshing and Data Processing 

The force strain gauges were implemented in 

ABAQUS as a sandwich of three thin foils (glue, 

backing and foil) of 6 mm by 6 mm, positioned on 

the body of the dynamometer using a type “tie” 

constraint, with the following properties: Young’s 

modulus of 3.45 GPa, 2.96 GPa and 159 GPa, 

respectively; Poisson’s ratio of 0.3 for glue and 

backing, and 0.3 for the foil. 

The FEM simulations were run with a 0.5 mm 

distance between nodes (resulting in 650 nodes on 

each surface of the foil 26 by 25 grid). A 10-node 

quadratic tetrahedron element (C3D10) was used in 

this study and implicit analysis was chosen. 

The spatial displacements (𝑈1 , 𝑈2 , 𝑈3 ) at the 

surface nodes of the foils and their associated 

positions (in mm), were collected in a similar 

method to the one presented in the previous section. 

However, the equivalent sensors output was 

calculated using equation (9). 

𝐼FEM−SENS = 1000 × 

 

[
2 + 𝑘(εL1,(𝑖,𝑗) + εL3,(𝑖,𝑗))

4 + 𝑘(εL1,(𝑖,𝑗) + εL3,(𝑖,𝑗) + εT1,(𝑖,𝑗) + εT3,(𝑖,𝑗))

−
2 + 𝑘(εT2,(𝑖,𝑗) + εT4,(𝑖,𝑗))

4 + 𝑘(εL2,(𝑖,𝑗) + εL4,(𝑖,𝑗) + εT2,(𝑖,𝑗) + εT4,(𝑖,𝑗))
] 

(9) 

where the numbers after L and T indices indicate the 

sensor number. 

3. RESULTS 

3.1. Dynamometer with No Sensors 

Here, the FEM compression results at 20 kN for 

1 mm and 2.5 mm distance between the 

dynamometer nodes and two loading conditions, 

concentrated force - Figure 5 a), and pressure - 

Figure 5 b), is reported.  

 

Figure 5: Loading conditions: left) Concentrated force 

case study; right) Pressure case study 

Figure 6a shows a cylindrical plot of all the 

errors in mV/V between the FEM results at 2.5 mm 

(×) and 1 mm (o) meshing distance for concentrated 

force case study and analytical solution. The 

magnitude of these errors decreases from 

approximately 32 V/V for both meshing distances 

at the far ends of the sampled area on the 

dynamometer to below 0.05 V/V and 0.03 V/V 

around the middle of the dynamometer for 2.5 mm 

and 1 mm meshing distance, respectively. 

The standard deviation calculated at each axial 

position decreases from 1.5 V/V to 1.7 nV/V. As 

shown in Figure 6b, the mean errors at each axial 

position between the FEM results and analytical 

solution are larger than their associated standard 

deviations. However, the difference between the 

average mV/V results for 2.5 mm and 1 mm node 

distance was larger than their combined standard 
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deviation only in the middle 12 mm of the 

dynamometer, see Figure 7. 

a) 

 

b) 

 

Figure 6: Error maps between FEM compression results 

at 20 kN, 2.5 mm (×) and 1 mm (o), and the analytical 

solution in the concentrated force case study: a) all data; 

b) means and standard deviations (error bars) at each 

axial position. Axial positions are relative to the middle 

of the dynamometer 

 

Figure 7: Concentrated force case study at 20 kN – EN is 

ratio between the standard deviation and the absolute 

mean error: (×) 2.5 mm nodes distance FEM result 

relative to the analytical solution, (o) 1 mm and the 

analytical solution and (+) errors between the two nodes 

distance FEM results. Axial positions are relative to the 

middle of the dynamometer 

Whilst there are no significant differences 

between the pressure case study and the 

concentrated force, the smallest absolute difference 

between FEM and analytical solution drops to 

0.7 nV/V. The pressure case study provides smaller 

absolute errors in the central 6 mm of the 

dynamometer as shown in Figure 8. 

Despite such small differences between the two 

test cases and analytical solution, there is a 

significant difference between the two of them, as 

shown in Figure 9. The difference in mV/V is 

almost constant in the bottom 20 mm. 

 
Figure 8: Means and standard deviations (× 10), at the 

central axial position on the dynamometer, of the errors 

between the pressure case and the analytical result (o), 

and the concentrated force and the analytical result (×). 

All data reported for compression at 20 kN 

 
Figure 9: Difference between FEM results for 

concentrated force and pressure case study at 20 kN and 

2.5 mm node distance 

As the FEM mV/V response is derived the 

longitudinal and radial strain, further plots including 

the relative mean errors between the FEM and 

analytical results along the axis of the dynamometer 

and of the relative errors in the middle of the 

dynamometer are presented in Figure 10a and 

Figure 10b respectively. 

The FEM dynamometer force response is 

reported for 2.5 mm distance between the nodes and 

for a range of compression forces ranging from 

(0 to 20) kN in 10 % increments, and compared 
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with the real sensor calibration results, which was 

performed at PTB according to ISO 376:2011. 

Figure 11a presents the relative mean errors 

between the FEM results and analytical results, as 

well as the relative difference between the mean 

calibration results of the sensor and the analytical 

solution. Figure 11b presents only the non-linearity 

errors of the FEM and calibration results. 

a) 

 
b) 

 

Figure 10: a) Relative mean errors between FEM and 

analytical results along the axis of the dynamometer; b) 

Relative errors between FEM and analytical in the middle 

of the dynamometer (secondary axis in % for radial strain 

only). Legend: (×) axial strain, (+) radial strain, (o) mV/V 

indication, black - concentrated force, and red - pressure 

case study. All data reported for compression at 20 kN 

and 2.5 mm node distance 

Unlike the sensor calibration results, the FEM 

relative differences from analytical solution do not 

vary as function of applied force and are just below 

0.2 %. Apart from a second order force error 

(non-linearity), the calibration results are 

approximately 5.8 % different.  

3.2. Dynamometer with Sensors 

Figure 12 presents the difference between the 

dynamometer FEM results in mV/V with the strain 

gauges and without (pressure loading conditions, 

20 kN and 2.5 mm node distance). 

The errors vary from a couple of parts per 

million at the top end of the dynamometer (15 mm 

axial position in Figure 12) to about 0.4 % around 

position on the strain gauges. However, the sensor 

output was found to be noisy and with large errors 

around the edges of the sensors. 

For comparison, the relative errors of the mV/V 

output of the dynamometer at 6.5 mm below its 

centre and the average sensors output calculated 

from all the results obtained between 0.5 mm above 

and below that position are shown in Figure 13. 

a) 

 
b) 

 

Figure 11: a) Mean relative difference from analytical 

results 7 mm; b) mean non-linearity errors. Legend: (×) 

FEM pressure case, (+) FEM concentrated force, 

continuous line - mean calibration results 

 

Figure 12: Relative difference between the mV/V output 

of the dynamometer with and without strain gauges 

The difference between sensors output and 

analytical results was approximately 0.5 % with an 

associated standard deviation of the mean of 0.12 %. 
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4. DISCUSSIONS AND CONCLUSIONS 

To put the results in the context, the relative 

uncertainty component associated with the force 

traceability was 20 ppm, which corresponds to 

24 nV/V at 20 kN. 

 

Figure 13: Relative difference between the mV/V output 

of the dynamometer with (+) and without strain gauges 

(o), average sensor output (◊) and the analytical solution 

From the outset of section 3.1, the FEM results 

demonstrated their advantage over the analytical 

formulation to represent closely the dynamometer 

response, especially when the shape of the elastic 

element is not a perfect cylinder. The differences 

between the FEM and analytical solution, depicted 

in Figure 6, are always larger than the standard 

deviation associated with the FEM results, the 

standard deviation in this case being a measure of 

the effect of the spatial reproducibility FEM results. 

However, FEM requires very careful 

implementation which is especially important in the 

DT of measurement uncertainty context, from 

meshing to sampling and from choosing the correct 

constitutive models to extract/ visualise the results. 

For example, in this study only two node distances 

were studied, 2.5 mm and 1 mm, simulations form 

smaller meshing distances being nearly impossible 

to run in an average computer. The difference 

between the results obtained for these two meshing 

conditions being comparable with the top end 

traceability contribution (see Figure 7 and 

Figure 8). Much larger differences in results were 

recorded for different loading conditions, with 

magnitudes in the order of tens of a percentage at 

the lower end of the dynamometer to one percent of 

the reproduced values at the top end, as shown in 

Figure 9, highlighting potential effects of the 

loading set up. 

However, the mV/V equivalent results present 

less errors compared to the individual strain values 

from which they are derived, as shown in Figure 10, 

highlighting the potential numerical errors arising 

from the approximations performed in FEM, and in 

this case their effect on the radial position of the 

surface nodes. The way in which the sensors are 

connected in practice to measure the force without 

the bending effect seems to remove the effect of the 

FEM numerical errors. 

Nevertheless, the sensor calibration results did 

not match the expected non-linear behaviour of the 

mV/V output (see Figure 11). This discrepancy is 

likely to originate from the strain gauges output, 

which has been addressed in section 3.2. The FEM 

results are affected by the presence of the strain 

gauges as shown in Figure 12 and Figure 13, which 

may change significantly with the type of constraint, 

subject of future work. However, the FEM 

non-linear errors do not change in the presence of 

the gauges attached to the dynamometer, meaning 

that the present configuration of the FEM is not able 

to predict current behaviour of the sensor. 

Here we have investigated the FEM potential to 

become an integral part of a metrological DT [6] of 

a force device and, besides the discrepancies 

between the experimental and analytical results 

which require further investigations, we have shown 

that the FEM results can be used to provide reach 

graphical representation of the sensors output, 

which in turn can be used in future decision-making 

processes. Nevertheless, the next steps are focused 

on the conceptualisation of the DT [7], i.e. 

integrating the FEM model into a metrology 

decision making process. 
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