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Abstract – The historical heritage requires particular 
systems to preserve its state of conservation. In this 
regard, the Structural Health Monitoring (SHM) 
systems they are fundamental in conjunction with 
suitable algorithms that allow the automatic detection 
of possible critical events that would ruin the state of 
conservation of the building. In this paper is proposed 
the use of a SHM system based on the analysis of the 
Acoustic emission in conjunction with an K-nearest-
neighbor (KNN) Artificial Intelligence (AI) Algorithm 
for the classification of the data. Fundamental, in the 
use of the Classification algorithms based on AI, is the 
use of suitable features. In this regard, these features 
are estimated by using the Gutenberg–Richter law, 
typically used in the analysis of the earthquake. This 
permits to correlate the characteristic of the magnitude 
acoustic emission due to an event in the building with 
the number of the events.  
Experimental test will be used for the training and the 
test of the proposed architectures.  

 I. INTRODUCTION 
The preservation of the historical heritage building is an 

important task that require innovative system to be 
performed. In this field, interesting advantages are 
provided by the use of Structural Health monitoring 
systems (SHM) [1]–[8]. Among the SHM systems 
particular interest is devoted to the systems that provides 
the information about the state of the building by using the 
Acoustic Emission (AE) signals analysis. In fact, a damage 
in historical building, for example generated by a 
compression or a stress of the building, generate a 
localized releasing of internal energy that can be felt as an 
AE in the following called crack and represented in Fig1. 

Due to their origin the cracks are diffusely used in the 

online SHM system to determine the damage evolution 
[4], [6], [16], [7], [9]–[15].  

The main problem in the analysis of AE in a SHM 
system is the signal loss. I fact, due to the non-
homogeneous characteristics of the material in which the 
propagation of the AE is performed the arrival time and the 
attenuation can be different respect that obtained in a 
homogeneous material. This can cause that the acquisition 
system of the SHM do not recognize the AE events 
obtaining a signal loss. To overcome this problem several 
solutions are proposed in literature. In particular, in [12], 
[17] the input signal are connected to the SHM system by 
a multi-triggered acquisition system [18]. 

An important topic, once the AE is acquired, is the 
analysis of the signal in order, to detect or identify a critical 
event which can affect the state of the historical structure. 

 
Fig. 1. AE in a concrete sample due to a stress 
representation.  
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The identification can be done by using thresholds 
empirically defined by the experience of the operator [19] 
or an automatic identification based on artificial 
intelligence algorithms. These algorithms are based on the 
pattern recognition of some features estimated on the signal 
[20]–[29]. With this aim in the paper is proposed the use of the 
Gutenberg–Richter law (GBR) [30] adaptation to evaluate 
the features that make up the pattern that will be recognized. In 
fact, in previous paper [17], [19] is demonstrated as the GBR 
law can be used to determine the damage in concrete 
structure by using the AE signals information and in 
particular critical damages.  

The same features are used to train the Machine 
Learning algorithm so is not necessary a threshold defined 
by the experiences of the operator. 

Among the Machine learning algorithm the k Nearest 
Neighbour Classifier [31] is chosen for the classification 
of the AE feature because it is particularly suitable for 
online classification applications. 

The paper is organized as follows: in Section II, the GBR 
law modification is analyzed; in Section III, the k Nearest 
Neighbour Classifier is summarized; in Sections IV, the 
experimental results are presented; finally, the conclusions 
are drawn. 

 

 II. ADAPTATION OF THE GUTENBERG–RICHTER 
LAW 

In order to empirically identify some relationship 
between variable parameters referring to the geographical 
area where the earthquake occurs and the earthquake itself 
the GBR law play a main role [32]. This law is based on 
the analysis of magnitude-frequency relationship and uses 
all magnitude values of earthquakes in a region and not just 
the highest ones. The analytical expression of this law is: 

  (1) 

where N is the number of the events, M is the magnitude 
of the events, and “a” and “b”, so called b-value, are two 
empirical constants. The constant "a" depends on the 
seismicity rate, and varies significantly from area to area. 
Instead the earthquakes number determines the constant 
“b”. The “maximum-likelihood estimation” (ML) 
methodology, was used in order to identify the b-value: 

  (2) 

where Mav is the average of the observed magnitudes, and 
Mmin is the minimum or the considered threshold 
magnitude. 

The fracture process in concrete generates Acoustic 
emissions (AE). These last are elastic waves, and permits 
to analyze the fracture process by their amplitude 
distribution. Among various parameters, the most 

important one is the b-value obtained from the amplitude 
distribution data of AEs according to the Gutenberg-
Richter law [19]. The AEs recorded during the test are 
oscillating damped waves very similar to the waves that 
are generated during earthquakes. These waves are 
characterized by a decreasing amplitude up to the noise 
threshold. Starting from these considerations, it is possible 
to transform the formulation enunciated by Gutenberg-
Richter adapting it to AE as following: 

  (3) 

where N is the number of the hits over the noise threshold 
of a singular AE analyzed during the process, Adm is the 
maximum amplitude of AE signal, and “a” and “b” are two 
constants. Constant “a” can be obtained for each test 
carried out, by considering that in the earthquake the 
maximum magnitude generates a b-value tending to 1. In 
our analysis, the critical events recognized on an AE have 
to generate a b-value equal to 1. Therefore, for the critical 
events the a-value can be obtained by the (3) as: 

  (4) 

Then the feature used in the proposed classifier are a-
value and Adm. 

 

 III. K-NEAREST NEIGHBOUR ALGORITHM  
The K-Nearest Neighbour  (kNN) belong to the supervised 

learning algorithm among the machine learning techniques.   
In the KNN the classification of the input data is based on the 

closest training example in the feature space [31]. In Fig. 2 is 
represented a typical classification problem solved by KNN. 
The algorithm determines the distance L in the feature space of 
unknown object from the other object previously classified in 
the training phase. Usually, among the distance definition, the 
Euclidean one is used: 

  (5) 

where N is the number of features, Pi is the i-th feature of the 
object to be classified, and Ti is the i-th feature of one of the 
object pre-classified used in the preliminary training of the 
algorithm. 

In the example there are objects belonging to two class. If k 
is equal to 5 the 5 nearest objects are taken into consideration, 
determining the classification area shown in the figure with the 
solid line. At this point the algorithm consider the neighbor 
object class as a vote for the classification of the unknown 
object. Then the object is classified on the basis of the majority 
vote of its 5 nearest neighbors. If k is 11 then the dashed line 
area is considered. Typically, is considered k equal to 1 for 
which the classification is made to the nearest neighbor. 
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 IV. EXPERIMENTAL RESULTS 
For the experimental results an acquisition system 

composed by a AE sensor, DAQ board and multi-triggered 
generator system [11, 22] is considered. The AE sensors 
used in the experiment are the R15α characterized by a 
resonant frequency 150 kHz and peak sensitivity 
69V/(m/s). the sensors are connected to the input channel 
of the acquisition system. The acquisition system used is 
the National Instrument NI6110 DAQ board with four 
channels, a sampling frequency equal to 5 MHz and an 
amplitude resolution of 12-bit. The multi-triggered 
generator system is connected to the sensors to generate 
the trigger signal to start the acquisition of an acoustic 
event. In order to the test the method in controlled 
conditions a sample with known characteristic is 
considered. In particular, a concrete cube is used as 
samples. Instead the material is obtained accorded to 
EN12390-3 [33].  

In order to fix the sensors to the sample a silicone 
adhesive bonding agent was used. The sensors are fixed on 
the center of the longitudinal face of the sample (Fig.3) [1, 
33]. 

In the experimental setup is necessary to stress the 
samples in order to generate an AE. With this aims the 
samples are placed in a hydraulic press. This press stresses 
the samples with a controlled uniaxial compression, 
permitting to obtain load-displacement and the load-time 
diagrams. Both the controlled hydraulic press and the 
acquisition system are connected and managed by a PC 
with a proper software developed in Matlab environment. 

Following the standard EN 12390-3 [33] it is considered 
that for a stress lower than 40% of its maximum resistance 
of compression, the macroscopic behavior of the specimen 
is linear and elastic, and there are no important cracks 

because they are not inside the specimen. In the case under 
consideration this value is equal to 10 MPa. Instead, for 
stress in the range [40, 85] % of maximum resistance of 
compression, the macroscopic behavior of the specimen is 
not linear and the micro-cracks develop with the increasing 
of the stress. By considering this, the AE signals detected 
during the first 600 s, corresponding to the compression of 
1 mm of specimen, are discarded. 

 A. Analysis of the samples 
Preliminary data are acquired and used to train the KNN. 

With this aim the AE acquired are classified as and the 
classification of the critical/non-critical events are 
provided by the information arising from the hydraulic 
press and the analysis of the operator. The features 
memorized for the training and the comparison with the 
non-classified samples are the a-value and Adm, evaluated 
an all the four channels of the acquisition system. 

In the training 2500 AE events are considered 50% of 
them are critical events and the other 50 % are non-critical 
events. The KNN classifier is preliminary trained with this 
supervised learning data and then used with blind 

 
Fig. 2. KNN algorithm Classification representation 
respect two features (A,B). Round object is the object to 
be classified, the square objects represent the object of 
class  , the star objects represent the objects of class .  
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Fig. 3. Experimental setup  
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acquisition of different sample. In particular, other 3000 
AE events are considered. Also in this case the 50 % 
represent non critical events and the other 50 % critical 
events, respectively.  

 

 
 The confusion matrix representing the results are shown 
in Fig.4. The analysis of the confusion matrix highlights as 
the classifier have a misclassification equal to 2 % for 
critical events, and lower then 0.1 % for the non-critical 
events.  

 

 V. CONCLUSION 
In the paper, in order to monitor historical heritage 

building or structure a Structural monitoring system that 
automatically detect critical events is proposed. The 
monitoring system acquire and analyze the acoustic 
emission generated in the structure by the stress to which 
the buildings are subjected. the analysis of the acoustic 
emission is performed by using the modification of the 
Guttemberg-Richter law. Instead, the automatic detection 
of the critical events is performed by using a machine 
learning technique. The machine learning technique used 
is k Nearest Neighbor Classifier (KNN) because it 
provides faster classification results and then it is suitable 
for the online monitoring of the historical heritage. The 
proposed architecture is experimentally tested on concrete 
cube samples. The results show that the KNN has good 
classification accuracy and low misclassification.  
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