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Abstract – The registration permits to positioning 
in a single reference system point clouds 
acquired from different points of view. Since this 
is typically obtained with an iterative numerical 
method, it represents an important source of 
error in the entire reverse engineering process. 
As all iterative methods, such errors depend on 
the choice of the initial solution; therefore, this 
process requires an expert user who, by using 
dedicated software, choices the sequence of 
clouds to be registered, imposes for each 
pairwise the first attempt registration, launches 
the iterative method, and verifies the final result. 
With the aim to minimize the error and the user's 
interaction, some devices are proposed in the 
market (turntable or the anthropomorphic arm, 
etc.). The above-mentioned hardware and 
software tools cannot be used in the cultural 
heritage applications involving large and 
detailed objects. In this paper, an automatic 
alignment method of point clouds is proposed. 
The method uses as inputs the constant radius 
features, which are frequently detectable on 
cultural heritage objects. The automatic 
alignment of the point clouds is based on the 
recognition, the segmentation, and the 
registration of the sweep lines identifiable from 
these features. 

 I. INTRODUCTION 
Registration of point clouds captured by 3D scanners is of 
fundamental importance to many areas of research, such as 
computer vision ([1] and [2]), computer graphics [3], 
robotics ([4] and [5]) and geometric inspection. The aim is 
to compute the geometric transformation that optimally 
aligns pairs of point sets so that multiple datasets are 
merged into a common coordinate system. This is a 

challenging task, due to the following difficulties: 
unknown relative positions of the input data, noisy input 
data, variable point density of the point clouds and partial 
overlap between two data sets. 
In the 3D reconstruction of cultural heritage, point set 
registration is an important prerequisite for complete 
geometric model reconstruction. Due to the occlusion, in 
fact, an object cannot be entirely scanned from a single 
viewpoint. Therefore, the 3D scanner has to acquire point 
sets from different viewpoints to cover the entire surface 
of the object. These point sets, then, must be transformed 
into one common reference frame for 3D model 
reconstruction. Such a transformation can be achieved 
with multi-view registration of point sets acquired from 
different viewpoints. According to the number of point sets 
involved, the registration problem can be roughly divided 
into pair-wise registration and multi-view registration, 
with the former addressed relatively extensively. Point set 
registration can be used also to automatically search the 
matching between fragments of the same object. In this 
case, the alignment of fracture surfaces must be searched. 
The Iterative Closest Point (ICP) is one of the most used 
algorithms for aligning 3D point clouds. From an initial 
alignment, an iterative process minimizes the distances 
between the point clouds. In this algorithm, first 
introduced by Chen and Medioni [6] and Besl and McKay 
[7], one-point cloud (the reference or the target) is kept 
fixed and the other (the source) is transformed to best 
match the reference. The rigid-body transformation, which 
is a combination of translation and rotation, is iteratively 
refined to minimize an error metric, usually described by 
the sum of the differences squared between the coordinates 
of the matched pairs. The ICP algorithm has low 
computational complexity and can support parallel 
computing devices. However, the ICP algorithm demands 
an accurate initial guess and requires the closest point pairs 
are determined. 
In [8] Rusinkiewicz et al. identify six parts of the ICP 
algorithm that researchers have been improving over the 
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years: point selection, neighborhood selection, point 
matching, weighting pairs, outlier rejection, and error 
minimization.  
In addition to the coordinates of the points, the alignment 
of 3D point clouds can be carried out by extracting some 
3D local descriptors. These descriptors usually calculate 
the statistics of local geometric properties, such as surface 
normals and curvatures. A comprehensive review of 3D 
point cloud descriptors can be found in [9]. These 
descriptors often suffer from low descriptiveness, since 
they cannot provide a comprehensive and unambiguous 
representation of local shape geometry. These geometric 
properties are affected by uncertainties due to the quality 
and resolution of point clouds, surface noise, and single 
outliers. 
Point set registration is also used in industrial geometric 
inspection processes for aligning the 3D point cloud of the 
measured object with its CAD model so that they can be 
compared and the relative differences measured. In this 
case, the point cloud/CAD model alignment is generally 
driven by a geometric feature-based approach. An 
analytical geometric feature of the CAD model is aligned 
with the corresponding recognized geometric feature in the 
point cloud. Analytical features, however, do not generally 
characterize the artefacts of Cultural Heritage, nor 
fractured surfaces are simple geometries such as plane, 
cylinder, or cone. 
Since the registration of point clouds is typically obtained 
with an iterative numerical method, it represents an 
important source of error in the entire reverse engineering 
process. As all iterative methods, such errors depend on 
the choice of the initial solution. This process requires, 
therefore, an expert user who, by using dedicated software, 
choices the sequence of clouds to be registered, imposes 
for each pairwise the first attempt registration, launches the 
iterative method, and verifies the result. With the aim to 
minimize the error and the user's interaction, some devices 
have been proposed in the market (such as turntable or 
anthropomorphic arm).  
The hardware and software tools mentioned above, 
however, exhibit several problems when used in cultural 
heritage applications involving large and detailed objects. 
For this reason, this paper  

 II. THE POINT CLOUDS REGISTRATION METHOD 
The alignment method of point clouds, which is based on 
a feature recognition process, is sketched in the flowchart 
of Figure 1. The method takes advantage of the capability 
to recognize non-conventional geometric features such as 
the constant radius features [10].  

 III. CONSTANT RADIUS FEATURE DESCRIPTOR 
A constant radius feature  is a portion of the object 
surface, which develops along a trajectory (called sweep 
line) whose principal section is quite circular. The 
characteristic radius ri of this section is almost constant 

along the feature. In the cultural heritage these features 
occur frequently. For example, these features are usually 
detectable in some anatomic details of the human body. In 
Figure 2a) the points belonging to several features ij with 
ri 5.5 mm are evidenced. These features have been 
recognized automatically from the bust extracted by the 
tessellated model of the Neptune with Trident of Bologna 
by using a methodology recently developed [10].  

Fig. 1. Flow-chart of the methodology 

 A. Constant radius feature recognition 
The proposed methodology consists of the following three 
steps: 

- estimation of the differential geometrical properties 
(normal and curvatures) at each node of the 
tessellated model; 

- evaluation of the characteristic radii ri of the 
constant radius features  of the object; 

- segmentation of the features  for each -
value. 

Based on the results reported in [14], in this paper the 
differential geometrical properties are evaluated at each 
node by using methods robust with respect to noise: the 
medial quadric method for the normal versor and the 5-
coefficients paraboloid fitting method for the principal 
curvatures.  
In order to evaluate preliminarily the characteristic radii ri, 
an analysis of the occurrences of the r-values at the mesh 
nodes is carried out where the ri-values are estimated from 
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the histogram’s peaks. However, due to the uncertainties 
affecting the r-values (as also shown by the color map 
shown in Figure 2b), the peaks of the histogram are often 
not well defined (see as example the histogram in Figure 3 
for the bust reported in Figure 2). In particular, a peak blur 
effect, growing with the r-values, is usually observed 
which can be so relevant to cover other potentially useful 
peaks. In other cases, some fictitious peaks unrelated to 
real features may appear [13]. To cope with this lack of 
well-defined peaks an iterative methodology was 
implemented: at the end of the i-th iteration, the points 
recognized as belonging to the features  with ri equal 
to the peak value of the histogram are removed from the 
evaluation of r-histogram of the subsequent iteration i+1-
th. This iterative process is repeated until there are no more 
significant peaks in the histogram.  

 

 
 

 

 
The nodes belonging to a feature  are characterized 
by values of the minimum curvature radius r usually 
affected by significant uncertainty, as shown by the color 
map of radii shown in Figure 2b). This variability is due to 
several factors (as described in detail in [12]) and makes 
the detection of these features a not trivial process. In order 
to deal with this variability, a fuzzy approach was 
developed for the automatic recognition of the features 

. The fuzzy approach classifies unequivocally the 
points of the tessellated model according to three 
following categories: 

- points belonging to feature ; 

- points belonging to sharp edges; 
- generic (or residual) points. 

The segmentation of the tessellated model according to 
these categories requires the definition of three 
membership functions, denoted respectively by μi, μE and 
μG. Each of them measures the possibility that the generic 
node p of the object mesh belongs to one of the 
aforementioned categories. Since p can belong 
unequivocally only to those three categories, these 
functions must always satisfy the following equation: 

  (1) 

To establish the membership of the generic point to one of 
the afore-mentioned categories, some node properties, able 
to affect this membership attribution, have to be 
considered. For the membership function , the property 
considered is the sharpness indicator (SHI), which 
compares the normal vector evaluated at the generic point 
p by a smooth function approximating the h-ring 
neighborhood with the normals to each planar facet 
belonging to p neighborhood. To describe analytically the 
membership function μE a ramp function was selected 
(Figure 4a).  
The node property considered for  evaluation is the 
quality of the surface tessellation, which can be measured 
by the factor of curvature approximation . This factor, 
defined as “the maximum value of the tangent of the 
dihedral angles between adjacent triangular facets incident 
at p”, measures how well the geometry of a regular curved 
surface is described by the discrete model. A well-sampled 
surface is characterized by very small  values. In 
particular,  is 0 at each point of a flat surface 
independently from the quality of tessellation. For curved 
surfaces, γ increases as the surface is more coarsely 
sampled. For  evaluation, a trapezoidal function was 
selected (Figure 4b). In the figure  and t are experimental 
parameters estimated to take into account of the r-
variability due to the handmade manufacturing of the 
cultural heritage.  
In Figure 5, the color map of the membership function  
highlights the nodes for which a non-zero possibility of 
attribution to the features ij is identified. 
These color maps, however, do not allow distinguishing 
the single features ij from each other and from the other 
features. For this purpose, a further and last step, called 
region growing, is required [14]. The region growing starts 
from a seed node of the mesh selected among the nodes 
where the maximum membership degree  is reached. 
The seed node is compared with every node pj belonging 
to the 1-ring neighborhood to analyze the similarity. The 
nodes recognized as similar are aggregated in the growing 
region. The growing algorithm stops when dissimilar 
nodes are met or all the mesh nodes have been analyzed.  
Figure 6 shows the nine constant radius features  

with ri 5.5 mm recognized on the bust of Figure 1. 

Fig. 2. Points recognized as belonging to several 
features  with ri 5.5 mm (a). Color map of the 

minimum curvature radius r (b). 

Fig. 3. Histogram of the r-values for the bust of Figure 1 
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Fig. 5. Color map of the membership function  for the 

bust of Figure 1 

 
Fig. 6. The nine constant radius features  with 

ri 5.5 mm recognized on the bust of Figure 1. 

 B. How to identify the feature sweep line  
For each recognized constant radius feature, the sweep line 
is identified by its voxelization. The features  

described by voxels are processed so that their sweep lines 
are evaluated by using the methodology described in [15].  
The sweep line CRFDj of the j-th feature is defined 
by the set of points  located on the sweep line. Figures 
7 a) and b) show respectively the 8-th constant radius 
feature  recognized on the bust of Figure 5 
and the corresponding CRFD. 

 
Fig. 7. The 8-th CRFD for the feature  

recognized on the bust of Figure 5 

At the end of this step, the two point clouds to be registered 
are segmented in terms of CRFD. PCf and PCm are the sets 
of CRFD, pertaining respectively to the fixed and to the 
moving point clouds and identified for different values of 
the characteristic radius . 

 IV. COARSE-TO-FINE POINT CLOUD 
REGISTRATION ALGORITHM 

The aim of the 3D point cloud registration is to find the 
rotation matrix R and the translation vector t for which: 

  (2) 

where PCf and PCm are, respectively, the fixed and moving 
point clouds.  
At this purpose, the proposed method consists of three 
steps: correspondences generation, coarse registration and 
fine registration.  

 A. Feature Correspondence Identification 
The search of the correspondences between the point 
clouds PCf and PCm is an essential task for a suitable 
registration.  
In the proposed method, the correspondence generation is 
performed by taking into account all the possible 
combinations among the sweep lines of the 
features , recognized for a given value of the 
characteristic radius ri from the fixed point cloud PCf and 
the sweep lines  detected from the features 

 of the moving cloud PCm for the same radius ri.  
For each configuration, the first attempt solution is 
obtained by aligning the convolution matrix eigenvectors 
of the points belonging to  to those ones of 

.  
The ICP method is applied point-to-point to obtain a more 
accurate configuration. Being  and , 

respectively, the coordinates of the points  and 
 and  a threshold value,  and 
 are considerated as candidates for a 

correspondence if the following inequality is verified: 

Fig. 4. The ramp function for μE (a). The trapezoidal 
function for . 
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 (3) 

By aligning the convolution matrix eigenvectors based on 
the correspondences found with the afore-mentioned 
methodology, a rough registration between the point 
clouds PCf and PCm can be performed.  

 B. Registration refinement 
Fine registration is performed by an ICP algorithm, 
minimizing the following function specifically designed: 

  (4) 

where:  
- n is the number of points of PCm; 
- pj is the j – th point belonging to PCm; 
- TS(PCf) is the tessellated surface relative to the 

fixed point cloud PCf; 
- d(pj,TS(PCf)) is the distance between pj and the 

tessellated surface TS(PCf) according to the 
following equation: 

 (5) 

where  is a point belonging to the target point cloud 
PCm.  

- is a weight, which gives more 
importance to those points characterized by high 
values of the membership function  for a given 
characteristic radius ri.  

Figure 8 shows how to evaluate  and the distance d in 
the 2D case. 

 Fig. 8. How to evaluate the point  and the distance d 
in 2D. 

The weights wi play an important role for the 
functionalities of the method presented here and they are 
evaluated based on the membership function . This 
function, measuring the possibility that the generic node p 
of the object mesh belongs to a feature is, 
therefore, very important into the approach proposed here 
for the registration of point clouds.  

 V. RESULTS 
In order to quantify the performance of the proposed 
method, henceforth labelled as the CRFD-based method, 
the real test case of figure 9 has been chosen: it is a garden 
dwarf whose geometry is critical for methods based on the 
search for individual point correspondences. The model 
has been scanned by a 3D laser scanner (FARO Edge, 9 ft 

(2.7 m)), where the single point repeatability was less than 
0.064 mm. The average point spacing of the point cloud 
was set to 0.15 mm. Each of the acquired point clouds has 
been processed for generating a valid triangular mesh by 
using a commercial software (Geomagic®).  
With the aim to apply the proposed method, two different 
points cloud are considered in figure 10: the fixed point 
cloud PCf (figure 10a) and the moving point cloud PCm 
(figure 10b). In figure 11, the features  identified for 
three characteristic radii from the two points clouds of 
figure 10, are shown. 

 
In order to remove the possible false positives from the 
CRFD-correspondences, a dimensional analysis is 
performed. Figure 12 shows the results of this analysis by 
aligning the correspondences with a threshold value τd of 
0.75mm.  
In figure 13, the final configuration distance map for the 
first attempt configuration of figure 12 is depicted. 
With the aim to quantify the performances of the proposed 
method, the same points clouds are registered by using the 
commercial software Geomagic®. The applied tool is, in 
particular, the Manual Registration: after the user selected 
the corresponding points on the two points clouds, the 
software minimizes their distances by an iterative method. 
Figure 14 compares the normalized histograms of the 
distances point-triangles obtained for the two final aligned 
configurations. At present, the fully automatic method 
proposed here achieves similar performances.  

 VI. CONCLUSIONS 
In this paper, an automatic alignment method of two points 
clouds experimentally acquired is proposed. The method 
uses as inputs the constant radius features , which 
are frequently detectable on the artefacts of cultural 
heritage. These features can be automatically recognized 
from the tessellated models by a fuzzy methodology 
previously developed by the authors. The approach 
proposed for the automatic alignment of the point clouds 
performs the recognition, the segmentation, and the 
registration of the sweep lines identifiable from the 
features . The main limit of the method is that it 
correctly finds the correspondences in the case that the 
same feature is almost entirely present in the two points 
clouds to be registered. Future efforts should aim at 
verifying and improving the method in terms of time 

Fig. 9. The test case 
considered here

a) PCf b) PCm 
Fig. 10. The two points clouds of 

the test case considered here

d 
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consumption, robustness to small overlaps, mesh 
resolution and points irregularity. 

 
Fig. 11. The CRFDs identified for the point clouds of figure 10  

 

 
Fig. 12. First attempt configuration (a) and distance map (b) 

for the point clouds of figure 7   

 
Fig. 13. Final configuration 
distance map for the point 

clouds of figure 7   

Fig. 14. Comparison of the 
normalized histograms of 
distances point-triangles   
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