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Abstract − In this paper a soft fault diagnosis technique 

of analog linear circuits is presented. A Simulation-Before-
Test (SBT) approach is used, where the fault dictionary is 
designed by circuit signatures obtained using ARX model 
identification. 
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1.  INTRODUCTION 

The development of automated fault location techniques 
in electronic analog circuits is still an open research field. 
Many problems are encountered due, for instance, to the 
continuous nature of soft fault mechanism and to the 
presence of different sources of noise. 

The Simulation-Before-Test (SBT) [1] approach has 
provided good results in many applications. In order to use 
this approach, a “fault dictionary” has to be built up by 
collecting a set of circuit signatures. A signature consists of 
some parameters or functions, which summarize relevant 
information about the circuit’s behaviour. The signature is 
extracted from the circuit response during a simulation 
phase (before the diagnosis phase), by injecting a set of 
predefined test stimuli under a particular fault condition, and 
it  is stored in the fault dictionary.  In this way it is possible 
to build a signature collection, describing both the fault 
conditions and the fault free condition.  

The test phase is performed in a following step by 
comparing the signature measured from the circuit under 
test  (CUT) and the signatures contained in the dictionary. 
Classification thus achieves the fault detection and isolation. 
Neural classifiers trained by the fault dictionary seem 
particularly promising solutions for this purpose [1-3]. 

In this context, the selection of an efficient method to 
obtain the circuit fault signature is of the utmost importance. 
It is important above all to achieve a representative fault 
dictionary, using as the circuit’s signature a compact set of 
parameters. 

In this paper the analog linear circuits are represented in 
the discrete time domain by autoregressive models with 
exogenous input (ARX). The set of model parameters is 
used as circuit signature, and collected in the fault 
dictionary. In this way, a very compact and complete 
description of the circuit’s behaviour is achieved and used 
for subsequent fault classification. 

The classification is performed using a Radial Basis 
Function (RBF) neural network [4], suggested by previous 
studies [5,6]. The purpose is to diagnose the circuit 
component parametric faults, which in literature are also 
known as soft faults. Their principal characteristic is that if 
they occur, the circuit may continue to work without 
showing evident operational deficiencies (which would 
instead become manifest in case of a short circuit or an open 
circuit, for instance). Nevertheless, it is important to 
diagnose these soft faults, above all in application fields 
critical in relation to security. Moreover, a soft fault may be 
a warning preceding a more serious fault and, in these terms, 
it needs a continuous and automatic monitoring system. 

 

2.  METHODOLOGY 

The analog linear circuits are represented in the discrete 
time domain by an autoregressive model with exogenous 
input (ARX). Such an approach permits the use of an 
already established and efficient methodology for estimating 
the parameters of the model. Nevertheless, much more 
flexible models such as ARMAX, NARX or NARMAX can 
be used to supply a parametric description of the fault 
behaviour of the CUT (circuit under test). 

 For the considered ARX model, the input-output 
relationship can be represented in the discrete time-domain 
by the following equation: 
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In equation (1) the coefficients a(i) determine the system 
poles in the z-domain. While b(i) determines the system 
zeroes, T is the sampling period, p is the number of poles 
and m-1 is the number of zeroes, finally e(t) represents a 
white noise.   

To estimate the model coefficients from measured data 
an identification procedure must be used, in particular in this 
work a wide band test input signal (white noise or frequency 
sweep) is injected. A least mean square estimate is 
performed, by considering measured input and output 
sample sequences.  

The vector of the estimated parameters is used to 
describe the CUT’s behaviour  and to perform the diagnosis. 
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2.1. Fault Dictionary Construction 

As stated before, the soft fault location is obtained by 
comparing the CUT signature (from measurements) with the 
set of signature examples contained in the fault dictionary. 
Due to the continuous nature of the soft fault mechanism 
and the presence of different sources of noise, a complete 
“fault dictionary” containing all feasible fault examples 
cannot be generated. The problem is solved by sampling the 
fault space and considering an “intelligent” diagnosis 
system, able to generalise from a finite set of fault examples. 
The simulation phase can be split in the following steps: 

• A set of soft faults (circuit parameter deviations) 
leading to an unwanted behaviour of the output 
response is injected in the circuit.  

• The transfer function of the faulty circuit is 
evaluated in the s-domain. 

• The circuit transfer function is transformed in z-
domain using a Zero Order Hold (ZOH). 

• The ARX model parameters are obtained and used 
as a signature. 

 
In this phase, in order to develop an effective 

classification of possible circuit faults, the problems due to 
non-ideal automatic measurement’s system have to be 
considered as well as the noise, the finite sampling 
frequency etc. 

2.2. Neural Classifier 

For the sake of completeness, we also present the used 
classifier. It has been chosen as suggested in an earlier study 
[6] and is composed of a Radial Basis Function Neural 
Network. The three-layered neural network has Gaussian 
radial basis activation units in the hidden layer and linear 
outputs. The input layer receives the CUT’s actual signature 
(three parameters for the band-pass universal filter of figure 
1) and classifies it as faulty or faulty free by indicating, in 
the case of fault, the faulty unit. In the output layer, a 
“winner takes all” philosophy, has been considered. The 
network is trained in three separate steps by data contained 
in the fault dictionary: 

• The centers of the hidden node activation functions 
are placed on the centroids of fault dictionary data 
clusters. The clustering algorithm used in this work 
is Fuzzy C-means.  

• The width of the activation function is set by a p-
nearest neighbour heuristic. 

• The weights of the output linear nodes is found in a 
supervised way by least square method.   

Once the network is trained, it can be used for 
diagnosing subsequent circuits belonging to the same CUT 
family. 

3. EXPERIMENTAL RESULTS 

The technique has been verified using both simulations 
(for diagnosis validation) and experimental data, taken from  
sample circuits. The effect on parameter estimation of an 
additive noise superimposed to measured input and output 
signals was evaluated too. 

Moreover, the robustness of the technique with respect 
to the selection of the measurement system parameters such 
as the sampling frequency (the same both for the input-
output measured signal and for the transfer function 
transformation from continuous to discrete time domain 
during the simulation phase), the width of signal observation 
window, the constructive tolerance of components, etc., was 
investigated.  
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Figure 1: A Biquad filter. The nominal values are in the 
appropriate units. 

The circuit considered for the diagnosis is a Biquad 
(universal filter) as shown in figure 1, designed to have a 
cut-off frequency of 15.9 kHz; its components’ values are 
listed in table 1. 

 
  Component Nominal 

Value Tolerance 

C1 1 nF 1% 
C2 1 nF 1% 
R1 10 kΩ 1% 
R2 10 kΩ 1% 
R3 10 kΩ 1% 
R4 10 kΩ 1% 
R5 10 kΩ 1% 
R6 100 kΩ 1% 
R7 100 kΩ 1% 

 

Table 1: Biquad filter parameters. 

 The diagnosis phase is carried out by considering the 
hypothesis of single parametric (soft) fault, that is, all 
component values are kept within their constructive 
tolerances, except one, which deviates from its nominal 
value and takes a value outside the tolerance range. This 
approach requires the ambiguity group isolation, i.e. the 
identification of those components whose deviations from 
nominal value affect the signature in the same manner. 
Within every ambiguity group it is impossible to determine 
the parameter responsible for the fault. In a filter group R-C, 
for instance, it is impossible to understand, from the 
signature, if the fault must be ascribed to the resistor or the 
capacitor. For the device examined (figure 1), six ambiguity 
groups are obtained. One further group represents the fault 
free circuit operation (fault free circuit). Here the seven 
considered fault classes (taking into account the ambiguity 
groups) are listed: 

Class 1: C1 or R3 faulty; 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia                                                                              TC10



Class 2: C2 or R4 faulty; 
Class 3: R1 faulty; 
Class 4: R2 faulty; 
Class 5: R5 faulty; 
Class 6: R6 or R7 faulty; 
Class 7: no faulty components (fault free circuit).  
Considering the band-pass output node (Vb), the transfer 

function is: 
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where K, ξ, ω0 are the filter coefficients connected with the 
circuit parameters.  

The input signal, used both during the simulations and 
the measurements, is a sine sweep from 1 kHz and 50 kHz. 
Its amplitude is 4 Volt peak-to-peak, in order to assure the 
maximum SNR for proper signature generation. The sample 
frequency is 500 kHz.  

The signature is obtained from input-output signal 
measurements by applying the ARX model identification 
algorithm. The ARX model found has two poles and one 
zero (placed in z=1). The signature is thus consisting in 
three parameters, i.e. we have three coefficients for each 
CUT’s signature. They are b0, a1, a0 as shown in (3).  
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The neural classifier is trained by means of the data 
obtained by simulating of the CUT. A fault free circuit 
behaviour is simulated by considering the value of every 
component uniformly distributed within the range [0,99Xn 
1,01Xn], where Xn represents the parameter nominal value 
(with reference to table 1).  

On the other hand, the faulty conditions are simulated by 
varying the value of the fault element in the range [0,70Xn 
0,99Xn) and (1,01Xn 1,30Xn]. A uniform distribution was 
taken into account, for its conservative properties.  The 
values of the other fault-free components are uniformly 
distributed within the range of their constructive tolerances. 

In figure 2, the fault signatures collected in the fault 
dictionary are presented, with each marker corresponding to 
a different faulty condition.  
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Figure 2: Relative variations of the ARX parameters with respect 

to the parameter nominal values (in percentages), for the band-pass 
filter shown in figure 1, with a sampling frequency of 500 kHz. 

 

The choice of the signal sampling frequency is of the 
utmost importance to build an efficient classifier. There are  
two different requirements: on the one hand it is 
recommended to use the maximum sampling frequency to 
obtain the best signal reconstruction; on the other hand, the 
circuit signatures get closer in the parameter space when the 
sampling frequency increases. As a consequence, the 
diagnosis and isolation problems become very difficult 
issues to solve. This is demonstrated in figure 3, where the 
signatures collected in the fault dictionary, obtained using a 
sampling frequency of 1 MHz, are shown.  

 

x = C1 or R3 

x = C2 or R4 

x = R1 

x = R2 

O = R5 

O = R6 or R7 

(b
0-

b 0
n)

/b
0n

*1
00

 

(a1-a1n)/a1n*100 

(a0-a0n)/a0n*100 

 
Figure 3: Relative variations of the ARX parameters with respect 
to the parameter nominal values (percentage), for the band-pass 
filter shown in figure 1, with a sampling frequency of 1 MHz. 

 
 
In figure 3 it can be seen that the fault discrimination 

becomes a harder task when the sampling frequency gets 
higher, this can be observed in particular when observing 
the fault class given by faults of capacitance C2 or of the 
resistance R4. 

Therefore, for the input-output signals and for the 
conversion continue-to-discrete time domain, a sampling 
frequency obtained as a trade-off between time resolution 
and feature significance was used. The diagnosis method for 
the device in figure 1 is then verified by means of the 
simulation. 

 
Figure 4 shows the classification errors during both the 

training and the test phases, as a function of the number of 
the hidden layer nodes, with a sampling frequency of 500 
kHz.   

The test set is obtained by simulation with the same 
algorithm used for the training data set generation. Both sets 
consist of 120 examples per class. 
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Figure 4: Simulated classification error of the training and test 
phases, as function of the number of the hidden layer nodes. 
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These results indicate that the classification error on the 
test set is approximately 5% when the sampling frequency is 
500 kHz.  

 
In figure 5 the test error committed on a test set 

consisting of 120 examples of signatures per class is shown, 
when the number of hidden layer nodes is 455 (35 for each 
fault class). The errors related to positive deviations and 
negative deviations of the faulty parameters are represented 
separately for each considered fault class. A further class 
(the 13th ) represents the classification error for the fault-free 
circuit .  

Figure 5: Test errors obtained on 60 signature examples, listed for 
the 13 faulty groups.  

 
It is evident that the maximum classification error is due 

to the classification of fault of the capacitance C2 (and the 
resistance R4, which is a member of the same ambiguity 
group). The main reason of this difficulty is a low sensitivity 
of the signature with respect to a fault of the circuit 
components R4-C2.  

 

4. MEASUREMENTS 

In order to verify the method effectiveness, signatures 
are extracted from the measurements of the input-output 
signals performed on “a set of faulty Biquad circuits”. 
Faulty circuits are obtained by replacing the electrical 
components with others of different, well-known value.  

In order to obtain a correct fault diagnosis, it is necessary 
to make a calibration of the automatic measurement system, 
in particular with respect to the noise introduced during the 
signal acquisition phase. We obtained good results by 
modelling the noise as a white additive process, with a 
Signal to Noise Ratio of 47 dB for the acquired input signal 
and of 44 dB for output one. 

 
Figure 6 presents the measured fault signatures (the 

markers are squares), superimposed to those collected in the 
fault dictionary and already represented in figure 2.  

 
Figure 7 presents the classification obtained with the 

experimental data set. 
 

 

x = C1 or R3 

x = C2 or R4 

x = R1 

x = R2 

O = R5 

O = R6 or R7 

(b
0-b

0n
)/b

0n
*1

00
 

(a1-a1n)/a1n*100 
(a0-a0n)/a0n*100 

 
Figure 6: The signatures obtained from measurements (the markers 

are squares) and the signatures from the fault dictionary.  
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Figure 7: Percentage error committed by the classifier on a data set 

formed from the measurements, as function of the number of 
hidden layer nodes. 

 
This error is  zero when the number of the nodes in the 

hidden layer of the Radial Basis Function Network is 325, 
that is 25 nodes for each class. This experimental results are 
in agreement with the results obtained from the simulations. 
In fact experimental data seems to yield better classifier 
performance, but it must be note that these latter are 
obtained by injecting soft faults caused by deviations of the 
faulty parameters larger than 9% of the component nominal 
value. On the other hand in the simulated data set also more 
critical situations were comprised, since the minimum 
considered deviation, corresponding to a faulty condition, 
equals 1% of nominal value. 

5. CONCLUSIONS 

A technique for soft fault identification is presented. The 
fault location is performed by comparing the CUT signature 
with the examples contained in the fault dictionary. A neural 
classifier performs this comparison. The CUT’s signature is 
obtained by a model identification procedure (ARX). In this 
way the behaviour of the circuit is completely represented 
by a small set of data (the model parameters), and a large 
amount of information is provided to the classifier in a low 
dimension space. This allows obtaining  better performance 
of the classifier, also in terms of computational complexity. 

Using a different classifier or an other clustering 
algorithm, it may be possible to solve the problem of 
estimating the fault entity. 
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