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Abstract − In the paper a new homotopic method of 
fault diagnosis of analogue piecewise linear (PWL) circuits 
based on a large-deviation sensitivity model is presented. 
Homotopy maps one function f(x) into another g(x) by 
changing the homotopy parameter t∈[0,1]. The idea of the 
method relies on using the function f(x) to the description of 
the circuit under test (CUT) in the non-faulty state and the 
function g(x) to the description of the faulty CUT. For 
verification of assumed fault hypotheses node homotopic 
paths are used.  

The method enables localisation and identification of 
parametric (soft) faults in nonlinear circuits of PWL type. It 
is simpler in interpretation and calculation and more robust 
to the influence of CUT element tolerances and voltage 
errors in comparison with the homotopic method previously 
proposed by authors [8]. The method is illustrated by the 
example of single-fault diagnosis of a one-stage transistor 
amplifier. 
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approach, homotopy method 
 

1.  INTRODUCTION 
 
Fault diagnosis of nonlinear analogue electronic circuits 

is a difficult problem which is not solved generally till now. 
To simplify the problem, piecewise linear (PWL) models of 
nonlinear elements (Fig. 1) and circuits are used [1]. 

 

i

u

 
Fig. 1. Characteristic of piecewise linear model  

of a nonlinear element. 
 

Recently, a verification technique for fault diagnosis of 
PWL circuits with limited measurement accessibility to 
internal nodes has been applied. This technique (developed 

for linear circuits) is based on the assumption of a 
hypothesis that some elements of the circuit under test 
(CUT) are faulty and the remaining ones are fault-free 
[4][5]. In the diagnostic procedure different hypotheses are 
assumed and verified. Each hypothesis is described by an 
appropriate diagnostic equation. Verification of the 
hypothesis relies on checking the consistency of this 
equation with measurement data [2][3]. 

The disadvantage of the verification technique in 
application to PWL circuit diagnosis is a large number of 
verified hypotheses and ability to diagnose only on the level 
of fault localisation. Authors proposed the application of a 
homotopy approach [6][7] to the verification technique of 
PWL circuit diagnosis, which overcomes disadvantages 
mentioned above. In the paper [8] we published a new 
verification method of PWL circuit diagnosis, based on 
homotopy, which sufficiently reduces the number of 
hypotheses. It also enables the localisation as well as 
identification of parametric faults. 

In this paper we present another new homotopy method 
of PWL circuit diagnosis based on a large-deviation 
sensitivity model. The method is more clearer in 
interpretation, simpler in calculations and more robust on 
the tolerances influence of non-faulty elements as well as on 
voltage measurements errors.  

In the first part of the paper, the basis of linear homotopy 
and idea of the method is explained. Next, the linear 
homotopy mapping is formulated, and principle of 
hypothesis verification with the aid of homotopic paths is 
explained. In the last part, the method is illustrated by an 
example of single-fault diagnosis of a one-stage transistor 
amplifier and compared with the homotopy method 
previously proposed by authors [8]. 

 
2.  BASIS OF HOMOTOPY 

 
To introduce the homotopy approach applied in the 

sensitivity-based method, first we explain a common 
definition of homotopy and next the properties of the linear 
homotopy mapping. 

The homotopy is a continuous mapping of one function 
f(x) into another function g(x) as shown in Fig. 2, where the 
mapping parameter is a parameter t, called a homotopic 
parameter [8]. 

Many forms of the homotopy are known. One of the 
most known and useful in practice is linear homotopy 
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with properties: 
 

)()0,( xftxh ==  and . )()1,( xgtxh ==
 
These properties can be utilized for simpler solving of the 
equation in the following way: 
a) for h(x,0)=f(x)=0 there exists a solution x(t=0)=x0, easy 

to obtain, 
b) for h(x,1)=g(x)=0 there exists an unknown, difficult to 

obtain, solution x(t=1)=x*, 
c) homotopic parameter t∈[0,1] enables to lead the 

continuous homotopic path x(t) from x0 to x*. 
 

h(x, )=f(x)0

h(x, )=g(x)1

h(x, )0.75
h(x, )0.5

h(x, )0.25

x0

x*

 

Homotopic
 path

 

Fig. 2. The homotopy mapping of deformation of  
f(x) function into function g(x). 

  
We use the linear homotopy as the base of a new 

verification method of PWL circuit fault diagnosis. The idea 
of the method (called further homotopic) relies on using the 
function f(x) to the description of the CUT in non-faulty state 
and the function g(x) to the description of the faulty CUT.  

For verification of a fault hypothesis node homotopic 
paths are used associated with measurement circuit nodes 
and hypothetical faulty elements. If the assumed fault hypo-
thesis is true the different node homotopic paths meet at the 
same end point and the location of this point identifies the 
parametric fault. If the hypothesis is not true they meet at  
different end points. In the case of a true hypothesis the 
location of the end path point identifies the parametric fault. 
Thus, the homotopic method gives the possibility of 
localisation as well as identification of parametric faults. 

 
3. THE DIAGNOSTIC EQUATION 

 
 In the single linear region a PWL circuit can be 

described by bimultilinear functions dependent on many 
circuit parameters. For a single parameter it is possible to 
write these functions in bilinear form: 
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where   - measured node  voltage in a region k; ie
mi ,...,1= ,  - a number of nodes accessible for 

measurements;  - a circuit parameter in the region; 

m

j
p

bj ,...,1= ;  - a number of parameters;  , n ,  

and  - coefficients of bilinear function for  
parameter  in the region. 

b jn ,0 j,1 jd ,0

jpj,1d

 In each region the voltage change in the 
measurement node can be described as follows 

 

 0
iii eee −=∆ , (3)

 

where  - the node voltage of the non-faulty circuit in the 
region k. 

0
ie

Using the known large-deviation approach [9] the 
change of the node voltage in function of the parameter (a 
assumed single fault) can be evaluated jp
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where  - the small deviation sensitivity of the T ,  - 
the small deviation sensitivity of the denominator of the T , 

iTS i
iDS

i

jp∆  - the deviation of  from its nominal value in the 
region. 

jp

 We use equation (4) after transforming it to the form 
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as the basis of sensitivity approach to the homotopy method. 
From (5) we formulate functions f(⋅) and g(⋅) of the 
homotopy mapping. For the non-faulty circuit the function 

)( jpxf ∆=  takes the form 
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For the faulty circuit, for which ∆  and 0≠jp 0≠∆ ie  
one can get the function g   )( jpx ∆=
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From (6) and (7) in non-faulty and faulty states the linear 
homotopy in the region k in the measurement node i for the 
parameter pj can be introduced 
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Thus, on the basis of  we can define the linear 
homotopy for all regions and the node i, called further the 
generalized homotopy in the i-th node  

),( tph j∆

),( tpH j∆
 

 














<≤∆

<≤∆

<≤∆

=∆

−

−

j
Kj

j
Kj

K

j
kj

j
kj

k

j
j

j
j

ji

ppptph

ppptph

ppptph

tpH

1

1

10
1

  ),,(

  ),,(

   ),,(

),(
M

M

, (9)

 

where , ,…,  are boundary values of parameter pj 
in regions, K – the number of linear regions. 

jp0
jp1

j
Kp

From the generalized homotopy (9) we can obtain the 
node homotopic path leading from point zero (denoting the 
parameter in non-faulty state) to the deviation of the 
parameter . The homotopic path in the single region k 
takes the form 

jp∆
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and the generalized homotopic path for all regions 
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and it is called the homotopic diagnostic equation. For the 
assumed hypothesis pj the algorithm has to be performed for 
all node measurement voltages. Thus, for one hypothesis, 
there can be m paths obtained with one start point zero and 
m end points. The length of the single path and the number 
of passing regions are different, depending on the fault. The 
homotopic paths )(tPj∆  for several measurement voltages 
can be interpreted as traces from the non-faulty circuit, 
where parameter deviations are zero to the faulty circuit 
with some parameter deviations . jp∆

 
4. HYPOTHESIS VERIFICATION  

 
In the tolerance-less case, the verification of the 

hypothesis  relies on the comparison of several path 
ends. If all paths have the same end values 

 then the hypothesis associated with 

fault  is true with value  

jp

∆,..., m
jjj ppp ∆∆ , 21

jp f
jp
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otherwise the hypothesis is false.  
With regard to element tolerances and measurement 

errors, the simple comparison (12) is not enough. Thus, for 
verification, we apply the root-mean-square criterion 
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where  - the path end for i-th node voltage and element 
parameter pj. 

i
jp∆

The minimum value of )( jp∆δ  for all hypotheses 
 

 ))(),...,(min( 1min bpp ∆∆= δδδ  (14)
 

specifies the most likely faulty element with value 

=f
jp *0

jjj ppp ∆+= .  

The graphical representation of the true hypothesis is 
shown in Fig. 3. All homotopic paths si (i=1,...,m) start from 
one nominal point 0 to several ends in the same region, 
which are at close range.  
 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia                                                                              TC10



s1

s2

sm

...

t10
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p∆ j
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p∆ j
*

Fig. 3 Illustration of path ends lying at close range. 
 
The maximal discrepancy between the mean value of all 

ends *
jp∆  and one from the end values is small. In this case 

all m paths passed from the nominal circuit region to the 
other, the same for all path ends. 

In the case of a false hypothesis, the graphical 
interpretation is shown in Fig. 4. In the figure, starting from 
one nominal point 0, the ending points are at far distances 

from the mean value of *
jp∆ . 

 

s1

s2

sm

...

t10

p∆ j

 

Fig. 4. Illustration of path ends lying in large distances. 

 
Additionally, if path ends are in other regions, the fault 

hypothesis is false. 
 

5. DIAGNOSTIC ALGORITHM 
 
The fault identification algorithm for single faults can be 

illustrated by the block diagram shown in Fig. 5. The 
following steps of the algorithm can be distinguished: 
1. Measure voltages in accessible nodes. 
2. Formulate sets of diagnostic equations (11) associated 

with several hypotheses pj. 
3. For each hypothesis, find the values of path ends. If 

path ends for verified hypothesis are in different regions 
then the hypothesis is false and is not taken into 
consideration, otherwise from (13) calculate )( jp∆δ , 
j=1,...,b. 

4. Find the minimum value minδ . Hypothesis associated 
with 0min →δ indicates the most likely faulty element. 

 

Voltage measurement
in accessible nodes

...

Result of diagnosis

hypothesis p1 hypothesis pb

Diagnostic equation
for hypothesis p1

Diagnostic equation
for hypothesis pb

...

     Verification of
      hypothesis p1

     Verification of
     hypothesis pb

...

 
Fig. 5. Identification algorithm of single faults. 

 
6. EXAMPLE 

 
We illustrated the presented method on the example of 

the one-stage transistor amplifier shown in Fig. 6. The 
circuit contains m=3 nodes accessible for measurements: 
1,2,4. The transistor model consists of two 7-segment PWL 
diodes (Lr=7). Thus, the overall number of regions is 
K=(Lr)2=49. 

 

Q1
BC211

R4
1k

R2
10k

R3
4.3k

R1
10k

IN
1

2

3

5

Vcc+=20V

OUT4
R5
1k

R6
1k

 

Fig. 6. One-stage transistor amplifier.  
 
In this example we introduced the fault of the resistor 

R1, whose value we change from 10kΩ to R1*=12kΩ. The 
verification results for some hypotheses pj are shown in 
Table 1.  

 Let us analyze the hypothesis R1. Starting from the 
deviation ∆R1=0 one can get three path ends with similar 
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values of R1 deviation with the mean deviation value 

Ω=∆ 676,2000R1* . The root-mean-square δ(∆R1) 
number is the smallest in comparison to the other δ(∆pj). 
The identified fault is the resistor R1 with value 

*
R1 = 0* R1R1 +∆ =12000,676Ω. The relative identifi-
cation error is 0,006% and the diagnosis time – 0,25s. The 
graphical illustration of the paths for ∆R1 is shown in Fig. 7. 
If t=1, the R1 values are almost the same for all nodes and 
node voltages are equal measurement values. 

 
TABLE I The verification results for some hypotheses pj in 

nominal circuit region k=43. 

values for t=1 in region (7,1) 
pj e1 e2 e4 

Result of 
verification 
δ(∆pj) 

rd1 -1000,34 21,453 20,001 
false hypothesis 
– paths lead to 
different regions

αF 0,900 0,870 0,910 0,039

R1 12000,001 12000,978 12001,050 0,0007

R3 321,043 405,074 4801,231 
false hypothesis 
– paths lead to 
different regions

R4 -1988,591 -1978,290 964,743 3,568

  

t10

R1∆

e1

e2
e4

 

R1∆

R3∆

Fig. 7. Paths for true hypothesis of R1 fault. 
 
For some hypotheses, several paths lead to different 

regions. It indicates that the assumed hypothesis is false. 
The example of his situation is analyzed for hypothesis 
pj=R3. Paths for measurement node voltage e1 and e2 have 
the ends in region k=49. The values of R3 are similar. For the 
path associated with e4, the path end is in the nominal region 
and R3 value is different from two previous values. On the 
basis of the information that the path ends are in different 
regions we find that hypothesis is false. Additionally, the path 
ends are in large distances from each other.  

The graphical illustration of paths for the R3 deviation is 
shown in Fig. 8.  

 

0

R3∆ e1

e2

e4

t1

 

Fig. 8. Paths for false hypothesis of R3 fault. 
 

7.  COMPARISON OF THE HOMOTOPY METHODS 
BASED ON NODE CIRCUIT FUNCTIONS AND 

SENSITIVITY FUNCTIONS 
 
As comparable criteria for both verification methods 

(presented here based on the sensitivity model [9] and 
proposed previously based on node circuit functions [8]) we 
choose a number of verified hypotheses, time of diagnostic 
process and complexity of homotopic paths treated as 
diagnostic equations. 

 The most substantial advantage of the homotopic 
methods is the small number of hypothesis verifications, for 
single fault diagnosis equal to the number of elements. The 
number of hypotheses for the both methods is the same. So, 
the diagnostic time is similar. It is little shorter for the 
sensitivity based method, because of the simpler form of the 
homotopic path (requiring less calculation in the after test 
stage) for this method in relation to the method based on the 
circuit function in such form 
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Analyzing equations (10) and (15) we can see that in the 

sensitivity method we calculate the deviation of the 
parameter. The most important advantage of the sensitivity 
method is the robustness to the influence of CUT element 
tolerances and voltage measurement errors. 

Additionally, the sensitivity equation has a clear physical 
interpretation, because it contains only physical measurable 
quantities. Next, the start point of the homotopic path is 
always at point zero.  

In the circuit equation method we always start from the 
other point equal to the value of the parameter with nominal 
value. The equation contains parameters which do not have 
physical interpretation. 

The sensitivity model seems to be the best one from our 
point of view as the basis of homotopic methods of PWL 
circuit fault diagnosis. 

 
 
 
 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia                                                                              TC10



6. CONCLUSIONS 
 
We presented the new homotopic method of fault 

diagnosis of analogue PWL electronic circuits based on the 
large-deviation sensitivity model of the CUT. In our opinion 
the sensitivity model is the best one for using in homotopy 
based methods of fault diagnosis of PWL circuits. 

The advantage of the presented method in comparison 
with the previously proposed homotopic method using the 
node circuit functions is better conceptual and physical 
clearness and more robustness to the influence of tolerances 
and node voltage measurement errors.  

The method is presented on the example of a single fault 
diagnosis, but it can be extended to double and multiple 
fault diagnosis. Under investigation is the double-fault 
version of this method. 
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