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Abstract. The paper presents the introductory 
results in application to multi fault condition monitoring 
of mechanical systems in operation,  in particular internal 
combustion engines.  This generalization to multi 
dimensionality and multi fault condition monitoring is 
possible by utilizing transformed symptom observation 
matrix, and by successive application of singular value 
decomposition (SVD).  On this basis one can make  full 
extraction of fault related information from symptom 
observation matrix created by  traditional monitoring 
technology. Moreover, by SVD we can create several 
independent fault measures and indices, and some 
combined measures of overall system condition. In 
another words, full utilization of SVD enable us to pass 
from multi dimensional - non orthogonal  symptom 
space, to orthogonal generalized  fault space, of much 
reduced dimension. This seems to be important, as it can 
increase the scope and the reliability of condition 
monitoring of critical system in operation.  It enables also 
to maximize the amount of condition related information, 
and / or to minimize redundancy   in the primary symptom 
observation matrix, and the same, to redesign the 
traditional condition monitoring system. 
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vibration, faults, singular value decomposition. 

 

           1.SINGLE AND MULTI  FAULT MONITORING 

Contemporary systems of mechanical and civil 
engineering are becoming more complex in design, 
function, and maintenance. Often they are mechatronic in 
nature, and their mechanical part is usually  less reliable, 
creating comparatively the greatest risk in system 
operation. This is particular important when operation of 
system is critical in terms of human life,  economy, or 
both. As examples of such critical systems we may take a 
bridge, or its part for civil engineering,  a turboset for 
power generation, or huge fan supplying air for the  deep 
mining, in the case of mechanical engineering. 

One of the method of risk minimization for such 
critical systems is permanent installation of condition 
monitoring subsystem, in order to monitor the integrity 
and other operational characteristics of mechanical part 
(structure) of the complex system. Mechanical structures 
and machines in operation are vibrating, sometimes in a 
high amplitude and with wide spectrum.              

As it is known, the vibration process is a good carrier of 
many structural and condition related information. Hence 
we are measuring  vibration signals, and transforming by 
filtering and some fast time averaging operation, to obtain 
a set of symptoms of condition1. Symptoms are  evolving 
(usually growing) during the  system life θ, giving  good 
mapping of operational condition of a system.  

              

The condition of a system itself is usually 
expressed in terms of some measure of evolution of some  
few separate faults – Ft(θ), t= 1,2..$, or as some measure 
of overall operational condition.  As it is known they are 
contained in some symptoms of condition, like for 
example the vibration amplitude of machine casing.     
Having some additional historical records of observed 
symptom values, we can create  condition inference rules 
concerning reliability and risk issues of our system. As 
end result we are able to elaborate  “go / repair” 
maintenance decision set, usually separate for each 
symptom, controlling in this way the operation of a given 
critical  system, and lowering the risk of operation. Such 
is the idea standing behind the condition monitoring of a 
critical systems; from signals to  symptoms and to system  
condition assessment, but usually on the basis of: one 
symptom  - one condition measure. 

The measuring technology of today enable to 
measure many life dependent operational  and residual 
processes as symptoms.  Hence we can have many 
condition related    quantities, and a good possibility of 
creation of symptom observation matrix, when 
observing our system in a discrete moments of  life θ. We 
can also include to our consideration some assessment of 
system logistic vector, the life time in a first approach. 
Such is the  problem of this paper, to apply  the multi 
dimensionality  of system   condition observation, as it 
was initially proposed in already published papers [1], [2], 
[5]. 
             Briefly, we investigate here the multi dimensional 
symptom space of systems in operation, and try to 
elaborate some independent measures and indices of 
systems condition, for further inference with a higher 
confidence level. This is illustrated here by some 
examples taken from real condition monitoring practice of 
machines,  rail road Diesel engines in particular. 

          
                                                 
1 Symptoms are measurable quantities covariable with 
system condition. 
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 2. MULTIDIMENSIONAL OBSERVATION OF 
SYSTEMS IN OPERATION 

Let us take into consideration machine in operation, 
where during its life 0 < θ < θb , several independent 
faults  are growing; Ft (θ), t = 1,2,..u. We would like to 
identify and assess these faults by forming and measuring 
the symptom observation vector; [Sm] = [S1,...,Sr], which 
may have components different physically, like vibration, 
temperature, machine load, etc. In order to track machine 
condition evolution (faults), we are making equidistant 
reading of symptom vector in the life time moments;  θn, 
n = 1, ... p,  θp  ≤ θb , forming in this way the rows of 
symptom observation matrix (SOM). From the previous 
papers (see for example [1]) we know that the best way of 
pre processing of SOM is to center it (remove), and 
normalize (divide) to symptom initial value; Sm (0) = S0m, 
of a given symptom (column of SOM). This gives us 
dimensionless symptom observation matrix in the form 

     Opr  = [Snm],       Snm = 1
0

−
m

nm

S
S

,  (1) 

where bold letters indicate primary dimensional 
symptoms as taken from measurements. 
As it was already said  in the introduction, we apply now 
Singular Value Decomposition (SVD) [2], [3], [7], to the 
dimensionless SOM (1), in the form 

       Opr = Upp * Σpr * Vrr
T,  T- transposition , (2) 

where Upp is p dimensional orthogonal matrix of left hand 
side singular vectors, Vrr is r dimensional orthogonal 
matrix of right hand side singular vectors, and  the 
diagonal matrix of singular values Σpr  is as below 

  Σpr = diag ( σ1, …, σl ),  and   σ1 > σ2 >…> σu >0,      (3) 

  σu+1 =… σl =0,   l= max (p, r),   u = min ( p, r). 

It means that from the  r measured symptoms we can 
extract only u ≤ r independent sources of information 
describing evolving generalized faults Ft . Such 
decomposition by SVD can be made currently after each 
new observation of the symptom vector; n = 1, … p, and 
in this way we can trace the  faults evolution in a system. 
From the current research of this idea [1], [2], [3],  we can 
say that the most fault oriented indices obtained from 
SVD is the pair SDt , σt , and the sum of them. The first 
indices SDt  can be named as discriminate of the fault t, 
one can get it as the SOM product and singular vector vt , 
as below 

 SDt = Opr * vt = σt  ⋅ ut  .             (4)   

We know that all  singular vectors vt are normalized to 
one, so the  energy norm of new discriminant is simply  

Norm (SDt) ≡SDt= σt. , t = 1, ...,u.          (5)    

In this way, for the given life time value θ the damage 
advancement of the fault Ft (θ) can be described by σt.(θ), 
and its momentary evolution by the discriminate SDt (θ). 
Hence we can present the following working hypothesis 

 SDt (θ)  ∼ Ft(θ),   with the energy norm;   

Ft(θ)∼ SDt(θ= σt(θ) .                                   (6) 

The discriminate SDt(θ) can be also named as fault 
profile, and σt(θ) as its advancement. The all concept 
observed in the system life time can be presented in Fig 1. 
 

 
Fig.1 Postulated lifetime meaning of SVD indices SDi, σi. 
 
The similar inference can be postulated to the meaning, 
and the evolution, of summation quantities, what can 
mean the  total damage profile SD(θ), and total damage 
advancement DS(θ), as below 
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3. EXAMPLES OF SVD APPLICATION 

In order to illustrate the diagnostic inference power of  
multi fault approaches, by SVD, some computational 
programs were prepared named  diaginfo.m, based on 
SVD algorithm, and written in the MATLAB 
computational system. By means of such software several 
real diagnostic cases was studied with a success.  
Let us take into consideration vibration  condition 
monitoring  of 12 cylinder railroad Diesel engines, where 
in some chosen point a dozen vibration symptoms (3 
acceleration amplitudes, 3 velocity, 3 displacement, 3 
Rice frequency) were measured, each ten thousand 
kilometer of mileage, up to 250.000 km. So our SOM has 
altogether 12 columns and 25 rows. The results of such  
new vibration condition monitoring, applied to the engine 
sil54d2 are presented in Figure 2. As it is seen from the 
top left picture, the 12 measured symptoms create dense 
brushwood, and nothing can be said from this picture. But 
after SVD computation, picture top right, one can say, 
that at least two independent generalized faults can be 
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recognized . And the same one can say considering SDi , 
σi indices of the lower picture, in Fig. 2. 
 

Fig. 2. The information contents of symptom observation 
matrix for a Diesel engine sil54d2, and independent fault 
indices SDi ,σI as discovered by SVD. 
 

Fig.3. Contribution of primary measured symptoms                      
(bottom left) to the first fault discriminants; SDi ,σi.                 

                                                                                        

It seems to the author, that figures 2, 3 and 4 confirm fully 
the usability of singular value decomposition, to extract 
multi fault information from symptom observation matrix. 
It is possible to create this during normal (routine)   
condition monitoring practice, and not only with vibration 
symptoms. We can also assess the information 
contribution of each primary symptom to any fault 
discriminants under our concern, and in this way to 
modify and diminish redundancy of symptom observation 
vector. 

 
As it is seen from that, the first generalized fault SD1 
increases almost monotonic, while the second SD2 is 
unstable, and it begins to grow really in a higher engine 
mileage above 200.000 km.   
Looking for the total damage indices, denoted on the 
lower pictures as; sum SDi  and sum σI, one can say they 
are similar to  the first generalized fault discriminant  SD1 

and σ1 . Hence, there is great redundancy in our 
observation vector, and we are interested  to diminish it. 
The next Fig. 3 answers partially this question, when 
looking to the bottom left pictures, giving the contribution 
of each measured symptom to the first generalized fault 
SD1. We can see there, that three last symptoms  (10 – 12, 
the Rice frequency) give low information contribution, 
and these can be omitted without substantial loss of 
monitoring quality.  
Next figure 4 present the result of application of this 
algorithm to another engine called sil24d2. As we can see 
from  the figure  and the picture top right, more than 60% 
of information contents concerns  the generalized fault no 
1, so SD1 and σ1.  The next generalized fault SD2 , σ2 
carries only 12 % of information contents. Looking at the 
bottom pictures in Fig. 4, one can say, that only the first 
generalized fault SD1 , σ1 gives the steady increase of  
both fault indices. 
 

Fig. 4. Information contents and discriminants evolution 
for sil24d2 Diesel engine. 
 

Commenting commonly the results obtained by 
using  SVD, as the method of multi dimensional condition 
monitoring shown in the paper, one can summarize them 
as follows. 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia TC1 

Proceedings, XVII IMEKO World Congress, June 22 – 27, 2003, Dubrovnik, Croatia                                                                              TC10



   

The proposed method of analysis of symptom observation 
matrix (SOM) enable to optimize its information contents, 
and to reject or include some primary symptoms of 
condition. When transformed symptom readings are load 
sensitive, with the use of SVD we can obtain  stable fault 
related indices with much higher range of life evolution, 
when compared to primary measured symptoms.  

 We can use for further maintenance related inference, 
any of  fault indices - for the first generalized fault, and 
some generalized fault idices as the measure of wear 
advancement. For the examples shown in the paper, (and 
it seems to be the general case also), good indices of 
overall condition seem to be the diagonal sum of singular 
values DS(θ), as the energy fault measure, and the sum of 
singular vectors P(θ), as the fault profile measure. 

In the view of theory and examples shown above 
we can present some life interpretation of Singular Value 
Decomposition (SVD). It seems to be valid for every 
generalized fault   Ft (θ), t = 1, ... , as well as for total 
generalized fault profile P(θ), and the total generalized 
fault energy DS(θ). This was shown on the Fig. 1 of the 
paper, and we can see there again, that for every life value 
of generalized fault energy or its advancement, we can 
draw the associated generalized fault profile SD(θ)t, on 
the perpendicular axis. The same maybe true for the total 
fault  profile and generalized fault energy. 

           This altogether means, that multi dimensional 
condition monitoring can give us real progress in on line 
assessment of condition of critical systems in operation. 
We can distinguish by this new method the momentary 
generalized fault profile SD(θ), as well as the generalized 
fault energy or its advancement DS(θ). The next 
additional step we need here in multi fault condition 
monitoring is to give limit values of chosen indices, 
measures, and generalized fault symptoms. And we can 
calculate this limit value by any method given  in [3], [4], 
or by the latest proposal [6] based on symptom reliability 
and Neyman - Pearson rule. 
  

4.CONCLUSIONS 
 
Paper starts with some summary of research 

concerning application of singular value decomposition to 
the problem of extraction of multifault information from 
symptom observation matrix. It was shown, that basing on 
SVD we can describe the condition evolution in terms of 
some independent fault discriminants. And one must 

interpret these new indices in term of machine damage 
and operational data. The whole idea is illustrated by the 
data  taken from the real diagnostic experiment on some 
Diesel engines.  It is good to mention here, that modern 
principal component analysis (PCA) is basing also on 
SVD, but giving much faster way of symptom processing 
and calculation. Hence it is postulated to use this modern 
tool. Also at the end of the paper,  one can postulate some 
generalization of SVD, (GSVD), in order to include some 
other operational data and matrices concerning the 
external and internal condition of machine operation. 
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