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Abstract − In order to realize a myoelectric-controlled 
multi-functional hand prosthesis, this paper proposes a 
method to improve the myoelectric pattern classification 
ability of a hand controller.  By applying the proposed 
method of µ-LAW quantization, the pattern classification 
rate increased by 11.1\% (averaged for five subjects) and by 
15.5\% (maximum), with a practical pattern classification 
rate of 97.8\% being achieved. 
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1.  INTRODUCTION 

 
In order to realize a myoelectric-controlled multi-

functional hand prosthesis, this paper proposes a method to 
improve the myoelectric pattern classification ability of the 
hand controller. 

Although the myoelectric control of electric-powered 
prosthetic hands has been researched since the early 1960s 
[1], and some prosthetic hands are already commercially 
available, most are single-function systems---only capable 
of performing a single function such as open-close---and are 
thus of limited usefulness in daily life.  Accordingly, there 
have been calls to develop multi-function systems, capable 
of carrying out more than one function [2]. 

In response to this demand for greater prosthetic-hand 
functionality, recently, much research has been conducted 
on multi-function forearm prosthesis [3-7], applying pattern-
classification methods, such as neural networks [3-6] or 
logic circuits [7], in order to determine the hand actions. 

While neural network controllers are capable of highly-
accurate pattern classification, size is a major obstacle to 
compact implementation, which is required in an application 
such as a prosthetic hand controller, where the prosthetic 
hand has to be implemented to be both smaller and lighter 
than a human hand.  Therefore, we [7] have proposed 
utilizing a logic circuit for myoelectric-pattern classification, 
in order to realize a compact multi-function prosthetic hand. 

However, because myoelectric signals vary among 
individuals and even for the same individual over time, it is 
not possible to determine in advance the exact specifications 
of the classification circuit.  Accordingly, an evolvable 
hardware chip (EHW chip) [7, 8], which is capable of 

adapting its own circuit structure to specification changes, 
has been adopted for myoelectric pattern classification. 

In the case of myoelectric pattern classification with a 
logic circuit, it is necessary to quantize the myoelectric 
signals into discrete numbers, which must then be coded as 
binary bit patterns.  Efficient quantization and coding 
methods are, therefore, essential to realizing high-accuracy 
myoelectric pattern classification. 

We have previously reported improvements to pattern 
classification rates by applying logarithm quantization and a 
redundant code [9].  However, the logarithm quantization, 
which was executed with a fixed algorithm, is not always 
effective for all myoelectric-pattern distributions, because 
the distribution characteristics of myoelectric patterns differ 
among individuals.  Thus, it was only possible to achieve a 
3.1\% increase in the averaged classification rate with a 
maximum increase of 10.5\% [9]. 

In order to overcome this quantization problem, in this 
paper, we propose employing µ-LAW quantization [10], 
where transformation characteristics can be adapted to the 
distribution characteristics in terms of a µ-value. 

The effect of µ-LAW quantization is confirmed in the 
pattern classification of myoelectric signals, which are 
sampled from five subjects, including one experienced 
person, who has repeatedly participated in our experiments, 
and four new users joining our experiments for the first time. 

By applying the µ-LAW quantization, the pattern 
classification rate increased by 11.1\% (averaged for the five 
subjects) and by 15.5\% (maximum).  Furthermore, the 
classification rate for the experienced subject was 97.8\% 
(averaged over ten trials), demonstrating that skilled 
individuals are able to operate a multi-functional 
myoelectric hand with high-accuracy. 
 

2. The EHW chip 
 
Evolvable hardware is based on the idea of combining a 

reconfigurable hardware device with genetic algorithms [11] 
to execute reconfiguration autonomously [8].  This section 
briefly describes reconfigurable hardware and genetic 
algorithms before explaining how these are combined to 
realize evolvable hardware. 
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2.1. Reconfigurable hardware  
The structure of reconfigurable hardware devices can be 

continuously changed by downloading to them a bit string 
called the configuration bit string. 

A PLA (Programmable Logic Array, Fig. 1) is one of the 
simplest reconfigurable hardware devices, consisting of an 
AND-array and an OR-array.  In Fig. 1, the black and white 
circles indicate switches, which determine the 
interconnections between the inputs and outputs (black 
circles indicate the connections).  The rows of the AND-
array form logical products for connected inputs, and the 
columns of the OR-array form logical sums for the 
connected row in the AND-array.  We can specify these 
switch settings with a configuration bit string, as shown in 
Fig. 1. 

 

 
Fig. 1. The basic structure of the PLA. 

 
2.2. Genetic algorithms 
Genetic algorithms (GAs) are robust search algorithms 

loosely based on population genetics.  They effectively seek 
solutions from vast search spaces at reasonable computation 
costs.  Before a GA starts, a set of candidate solutions, in the 
form of binary bit strings, is prepared.  This set is referred to 
as a population, and each candidate solution within the set is 
called a chromosome.  A fitness function is also defined 
which represents the problem to be solved in terms of 
criteria to be optimised. 

The chromosomes undergo a process of evaluation, 
selection, and reproduction.  In the evaluation stage, the 
chromosomes are tested according to the fitness function.  
The results of evaluation are then used to weight random 
selections of the chromosomes in favor of fitter ones for the 
final stage of reproduction. 

In the final stage, a new generation of the chromosomes 
is "evolved" through genetic operations that attempt to pass 
on better characteristics.  Through this process of 
evaluation, selection, and reproduction which can be 
repeated as many times as required, less fit chromosomes 
are gradually expelled from a population giving fitter 
chromosomes a greater chance to emerge as the final 
solution. 

The basic concept behind the combination of 
reconfigurable hardware devices and genetic algorithms in 
EHW is to regard the configuration bits for the 
reconfigurable hardware devices as chromosomes for the 
genetic algorithms.  If a fitness function is properly designed 
for a task, then the genetic algorithms can autonomously 
find the best hardware configuration in terms of the 
chromosomes (i.e. configuration bits). 

 
2.3. Hardware implementation of EHW; the EHW chip. 
For most EHW research, genetic operations are executed 

by software running on either a PC or WS.  This makes it 
difficult to utilize EHW in situations that need circuits to be 
as small and light as possible, such as a hand controller.  
One solution to this is to implement the GA on the hardware 
and to incorporate it in a single LSI chip together with the 
reconfigurable logic.  The first version of the evolvable 
hardware LSI chip was designed by us in 1998 [7], in order 
to apply it to the hand controller. 

 
3. The myoelectric hand controller 

 
3.1. A Myoelectric pattern classifier with the EHW chip 
The basic concept underlying our approach to 

myoelectric hand prosthesis is to control a multi-functional 
mechanical hand with the EHW chip for myoelectric pattern 
classification.  The myoelectric hand system consists of a 
controller, a mechanical hand (Fig. 2), myoelectric 
electrodes and a battery (12V lithium-ion).  In our latest 
system, two commercially available myoelectric electrodes 
(OttoBock; 13E125=50) provide two myoelectric-signal 
channels. 
 

 
Fig. 2. The multi-functional mechanical hand. 

 
The controller consists of (1) a myoelectric signal 

quantizer, (2) a myoelectric signal encoder, and (3) the 
myoelectric pattern classifier on the EHW chip.  The 
quantizer and the encoder are required because pattern 
classification with the EHW chip is carried out using a logic 
circuit, where the input signals are binary bit patterns, on the 
PLA (Fig. 1).  Therefore, the myoelectric signals have to be 
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quantized to discrete numbers in order to encode them into 
binary bit patterns. 

 
3.2. Myoelectric pattern quantization 
Myoelectric signals were sampled during execution of 

the six following muscle contractions: (1) forearm 
supination, (2) forearm pronation, (3) wrist volar side 
flexion, (4) wrist dorsal side flexion, (5) hand closing and 
(6) hand opening, using surface electrodes attached to the 
forearm of the subjects.  The sampled myoelectric signals 
were normalized to the values, which range from 0 to 7, 
before being quantized to discrete number, with linear 
quantization. 

Fig. 3 shows an example of a myoelectric pattern 
distribution, where the x-axis represents the amplitude of 
signals detected from one electrode with the y-axis for the 
other electrode.  In the worst case of quantizing for the 
patterns in this figure, three different actions--forearm 
supination (19 patterns), forearm pronation (20 patterns) and 
hand opening (2 patterns)--would all be are quantized as 
(0,0).  This would lead to all the distinct patterns being 
classified as the same pattern, i.e., as being generated from 
the same action, and this kind of quantization error would 
hinder high-precision pattern classification. 

This kind of quantization error is caused by the bias in 
the distribution of myoelectric patterns, which is not 
uniform over the distribution range, but is rather biased 
towards the low-value region. 
 

3.3. Previous works for myoelectric quantization 
In order to remove the biases in the distributions of 

myoelectric patterns, we have proposed employing a method 
of logarithm quantization [11], which provides 
transformations with high precision for the low-value 
regions, but with low precision for the high-value regions.  
By applying logarithm quantization, the correct pattern 
classification rate increased by 10.5\% (maximum) from 
81.8\% (without logarithm transformation) to 92.3\% [11]. 

However, this method sometimes failed to increase the 
classification rate, and, consequently, the averaged rate only 
increased by 3.1\% [11].  This is because the logarithm 
quantization employs a fixed algorithm, and is not, therefore, 
effective for all myoelectric signal pattern distributions.  In 
order to overcome this problem, in this paper, we propose 
utilizing µ-LAW quantization [10]. 
 

 
Fig. 3. An example of a myoelectric pattern distribution. 

 
 

3. µ-LAW QUANTIZATION 
 
The µ-LAW quantization is performed by applying the 

following transformation, before quantizing to discrete 
numbers. 

VeforVeVv ≤≤
+

+
= 0,

)1log(
)/(1log(

µ
µ

 (1) 

where e is an input signal, v is an output signal, V is the 
maximum value of the input signals and µ is a 
transformation rate, which defines the transformation 
characteristics (Fig. 4).  In this method, the transformation 
characteristic can be adapted to the myoelectric distribution 
in terms of a µ-value; therefore it can be applied to any 
exponentially-distributed myoelectric signal pattern. 

Fig. 5 shows myoelectric signal patterns, which are 
transformed from the patterns in Fig. 3 by applying equation 
(1).  In this distribution, the worst case of quantizing for the 
patterns with µ-LAW quantization is (2,3), where forearm 
supination (8 patterns) and forearm pronation (5 patterns) 
are both quantized to these values.  This represents a large 
reduction in quantization error and, so, yields high-precision 
pattern classification.  In this example, the µ-value is set to 
100. 

 
Fig. 4.The µ-LAW transformation characteristic. 
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Fig. 5. An example of a myoelectric pattern distribution. 

 
 

4. PATTERN CLASSIFICATION RESULTS 
 
The effectiveness of µ-LAW quantization has been 

confirmed in a pattern classification experiment, using 
samples from five subjects, including one experienced 
person ('skilled' in TABLE I), who has repeatedly 
participated in our experiments, and four new users 
('beginners' joining our experiments for the first time. 

In these experiments, the parameters for GA operations 
were specified as follows. 

- Number of populations: 32 
- Crossover rate: 1.0 
- Mutation rate: 2/256 
TABLE I shows pattern classification rates with linear-

quantization and with µ-LAW quantization. Applying µ-
LAW quantization, the pattern classification rate increased 
by 11.1\% (averaged for five subjects) and by 15.5\% 
(maximum; subject 1).  Furthermore, the classification rate 
for the experienced person increased to 97.8\% (averaged 
over ten trials), clearly demonstrating that experienced 
persons can operate a multi-functional myoelectric hand 
with high-accuracy. 
 

TABLE I.  Pattern classification results 

  linear µ-law 
 Subject ID rate (%) rate (%) µ-value
Skilled 1 82.3 97.8 100 

2 78.7 84.7 500 
3 67.8 74.3 3.5 
4 69.0 83.4 10000 Beginner 

5 75.5 88.8 10000 
 

5. CONCLUSIONS 
 
This paper has shown that applying µ-LAW quantization 

increases the pattern classification ability of the myoelectric 
hand controller.  In the case of the skilled person, a practical 
pattern classification rate of 97.8% was achieved, which 
means that amputee persons can operate the multi-functional 
hand with high-accuracy, by undergoing rehabilitation 
training for myoelectric pattern generation. 

Our developmental work into hand prosthetics is not 
limited to only the hand controller but also includes the 
development of a multi-functional mechanical hand (Fig. 2), 
which has a wrist function as well as a hand open-close 
function.  The multi-functional hand with the EHW chip 
controller is currently in the clinical testing phase. 
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