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Abstract:  Least square linear regression is widely used in 
analytical chemistry. In practice a linear relationship 
between substance content and measured value still has been 
assumed based on the correlation coefficient criterion, 
although not recommended. Textbooks provide the 
necessary formulas for the fitting process, based on the 
assumption that there is no error in the independent variable. 
In practice the ordinary least squares (OLS) textbook 
procedure is used even when the previously stated 
assumptions are not strictly fulfilled. In this paper, how to 
validate the calibration function is dealt with in detail using 
as an example based on measurements obtained for 
cadmium determination by flame atomic absorption 
spectrophotometry (FAAS). Assessing uncertainties related 
to linear calibration curves is also discussed.  Considering 
uncertainties of weights and volumetric equipment and 
instrumental analytical signal it is observed that the most 
important factor that contributes to the final uncertainty is 
the uncertainty of the calibration function. 
 
 Keywords: uncertainty, calibration function, flame atomic 
absorption spectrophotometry 

 

1.  INTRODUCTION 

Soil contamination by cadmium must not exceed a limit 
of 5 µg g–1. Thus, a measured value of 4 µg g–1 with an 
uncertainty of 1 µg g–1 can be considered as compliant with 
the requirements. That will not be the case if an uncertainty 
of 2 µg g–1 is associated with the same value.  

Chemical analysis measurements provide a basis for 
important decisions concerning health, environmental 
protection, industrial processes, international trade, and 
commerce, among others. Therefore, chemical 
measurements must be good and have a known quality to be 
meaningful and to provide an adequate result for its intended 
purpose. Analysts could ask what “good” and “of known 
quality” means. This can be interpreted as a result of the 
“required accuracy.”  

Accuracy of measurement means the closeness between 
the result of a measurand and its true value [1]. Because 
“accuracy” is a qualitative concept, one should not use it 
quantitatively. The results should instead be associated with 
their uncertainties. Uncertainties associated with analytical 

measurements represent the doubt or level of reliability 
associated with the measurement.   

Element determination by flame atomic absorption 
spectrophotometry (FAAS) is very used by analysts. One of 
the most widely applied statistical techniques is the fitting of 
a straight line to a set of (x,y) data. Most textbooks on 
statistical methods [2-4] provide the formula for this fitting 
process and many hand calculators provide rapid means to  
have these formulas solved. On the other hand, calibration 
uncertainties are recently focused due to the need to have 
analytical results associated with its uncertainties. This 
consideration can also be exploited for computation of the 
confidence interval for the prediction of a y-value at a given 
x-value. In order to calculate the uncertainties of a 
calibration function, one must go through the straight-line 
model validation. 

Frequently analysts are concerned about improper uses 
of correlation coefficients [5]. They usually decide on linear 
adjust model considering the value obtained for the 
correlation coefficient. 

Let us use (xi, yi) to denote the ith data pairs and suppose 
there are n pairs in total. The correlation coefficient, R, is 
defined as: 
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where x  and y are the averages of the x and y 

measurements and Σ denotes summation over all n 
observations.  

When the points lie exactly on a straight line of positive 
slope R = +1; when the points lie exactly on a straight line of 
negative slope R = -1.  Mathematically R lies between +1 
and -1. Maybe this fact has given rise to the idea that R 
being near ± 1 indicates a linear relationship between the x 
and y variables. However values of R which can be 
considered large can come from markedly non-linear 
relationships [5, 6]. Although it has been discussed by many 
authors, in practice analysts misunderstand this concept.  

For analytical processes considering instrumental 
responses the calibration function is usually obtained by 
means of a calibration experiment; the observations usually 
represent the result of a physical measurement that must be 
converted into the analytical result [4]. The model equation 



used is the straight line equation, Yi = α + βXi + εi (with i =1 
to N), where Yi  is the response variable, Xi the independent 
variable, α the intercept, β the slope and εi  is the residual.  
The usual fitting procedure assumes that the x values have 
no error and the y values are subject to errors. In practice the 
ordinary least squares (OLS) textbook procedure is used 
even when the previously stated assumptions are not strictly 
fulfilled. If the x values are subject to errors, most of the 
users consider them as so small with respect to errors in y, 
that they are assumed as not significant [7]. 

Every calibration begins with the choice of a preliminary 
range which should contain the expected sample 
concentration as much as it is possible in the centre of the 
range. The measured values at the lower end of the range 
must be significantly different from the process blank. Since 
the imprecision of an analysis tends to increase with 
increasing substance content, the range must not be chosen 
too large. To ensure the applicability of the simple linear 
regression, the analytical precision over the entire range 
must be constant. This is known as the homoscedasticity 
assumption [7].  It can be understood that both the 
homogeneity of variances as the linearity of the calibration 
function should be tested and confirmed. 

Fitting a calibration function by OLS requires several 
assumptions related to the residuals and to the model. The 
omission of the assumptions tests is an important source of 
errors in analytical chemistry.  

This paper proposes to describe the various steps to 
demonstrate the validation of the linear regression model 
and a procedure for calculation of uncertainties components 
of an analytical result due to sample preparation (uncertainty 
of weights and volumetric equipment) and instrumental 
analytical signal (calibration uncertainty). A numerical 
example is carefully explained based on measurements 
obtained for cadmium determination by flame atomic 
absorption spectrophotometry (FAAS).   

 
The calibration experiment 

 

After establishing the preliminary range with the 
standard samples prepared so that their concentrations are 
distributed equidistantly as possible over the entire chosen 

range, the calibration function ( ii bxay +=)
) is calculated 

from the measured values. 
The regression parameters α and β are estimated by the 

least square estimators a and b considering the quantities 
that minimize the residual sum of squares,  
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 is the predicted dependent variable given by the 

estimated regression, xi the known concentration, a the 
estimate of intercept  

xbya −=  

and b is the estimate of slope (measure of sensitivity). 
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The measure of sensitivity results from the change in 
the measured value caused by a change in the 

concentration values. If the calibration function for an 
analytical procedure is linear, the sensitivity is constant 
over the entire range and is equivalent to the regression 
coefficient b.  

For each value xi at which a yi measured signal is 

available, the residual ei is given as iii yye
)−=  

The statistic R2 is evaluated as the proportion of total 
variation about the mean of measurements explained by 
the regression [2,3]. 
 
Verification of Linearity 
 

In order to perform the lack-of-fit test, ANOVA 
statistical test should be carried out. The total variability of 
the responses is decomposed into the sum of squares due to 
regression and the residual (about regression) sum of 
squares and the residual sum of squares is decomposed into 
lack-of-fit and pure error sums of square. The former is 
concerned to deviation from linearity and the latter from 
repeated points. Replications of each calibration point give 
information about the inherent variability of the response 
measurements (pure error). If the replicates are repetitions of 
the same reading or obtained by successive dilutions, the 
residual variance s2

res will tend to underestimate the variance 
σ2 and the lack-of-fit test will tend to wrongly detect non-
existence lack-of-fit. ANOVA table can be constructed from 
equations shown in Table 1. 

 
Table 1 – ANOVA table for OLS 

___________________________________________ 
 
SOURCE  SUM OF SQUARE d.f. MEAN SQUARE 
Total SQT Σ yij

2 n MQT=SQT / n 
correction ( “b”) FC n . y00

2 1 FC 
Total corrected SQC ΣΣ ( yij  - y00 )

2 n - 1 MQC=SQC / (n - 1) 
Due to regression (“a”) SQR Σ ( yi - y00

 )2 1 MQR=SQR 
Residual SQE ΣΣ ( yij - yi )

2 n - 2 MQE=SQE / (n - 2) 
Pure Error SQE

P 
ΣΣ ( yij - yio )

2 n - ni MQEP=SQEP/ (n - ni ) 

Lack-of-fit SQL Σ ( yi - yio)
2 ni - 2 MQL=SQL / (ni - 2 ) 

d.f. = degrees of freedom; n = total number of i– calibration points; n = number of 
concentration levels ; yij  = measured signal; yoo = mean of the measured signals; yi = 
predicted dependent variable; yio = mean of the replicates of i – concentration level; “ i ” 
index  refers to x - independent variable;  “ j ” refers to replicates in x – levels. First Σ is 
related from i = 1 to i = n . Second summation ΣΣ in SQC, SQE e SQEP is from i = 1 to 
j = ni    
  

A significant MQR/MQE ratio confirms that there is 
regression. If the ratio MQL/MQEP is higher than the 
critical level, a the linear model appears to be inadequate. A 
non-significant lack-of-fit indicates that there appears to be 
no reason to doubt the adequacy of the model and both the 
pure error and lack-of-fit mean squares can be used as 
estimates of the variance σ2. 
 
Test of Homogeneity of Variances 

The described linear regression calculation requires each 
data point in the range has a constant (homogeneous) 
absolute variation. Inhomogeneity can lead to a higher 
imprecision and to a higher inaccuracy through possible 
change in the linear slope. In order to test the homogeneity 
of variances, replicates of n standard samples of each of the 
lowest and the highest concentrations of the preliminary 
range are analyzed separately. The means and the variances, 
for both set of data, are calculated. The variances of both 



series of measurements are checked for homogeneity using 
the F-test. When the test statistic does not exceed the critical 
value, there is no reason to reject the null hypothesis and 
believe that there is not a significant difference between the 
variances. In the case of inhomogeneity of variances or non-
linearity, the chosen range must be reduced so as to fulfill 
these conditions, or more complicated calibration methods 
must be chosen as the weighted regression equations or 
higher degree-regression functions [4,8]. 

 
EXPERIMENTAL 
 

In the present study, FAAS was used for the cadmium 
detection and the uncertainty of the calibration function was 
assessed. Measurements were obtained by using a Perkin 
Elmer Flame Absorption Spectrometer, 5000 Model, with a 
cadmium lamp as the external source, at 247 nm wavelength 
and 0.7 slit width, and a deuterium lamp as the background 
corrector. All chemical reagents were analytical grade.  

A solution of HNO3 0.1 M was prepared for the leaching 
step. The studied material was a sample of vermiculite 
containing cadmium as contaminant. The sample was dried 
at 60°C for two hours to remove water content. Adequate 
aliquots of a NIST certificated standard solution of 1.000 
±0.002 g.l–1 of cadmium were diluted with deionised water 
to obtain five solutions (0.5, 0.75, 1.0, 1.5 and 2 mg.L–1) for 
the calibration function. The cadmium responses were 
measured in acid solutions obtained from leaching 56.3 mg 
of the solid material with 15 ml 0.1 M HNO3. After 
filtration of the leachate through a Whatman medium 
porosity filter paper, the filtrate was made up to 250 ml in a 
volumetric flask. Two ten-fold dilutions with deionised 
water were carried out to adjust cadmium concentration to 
the calibration curve working range. The analytical 
procedure is illustrated schematically in Figure 1. 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 1 – The adopted analytical procedure 

Uncertainty components (Figure 2) were quantified for 
each step of the analytical procedure as follows: weighing 

operation, dilution effects, measuring cadmium by flame 
atomic absorption spectrometry using a linear calibration 
function, and calculation of the final result. 
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Figure 2 – Uncertainties Sources in Cadmium Determination 

 
Investigation of the Contribution of Individual Steps 
 
Step 1: Weighing 

 
56.3 mg of the dried solid sample were weighted by the 

difference between container plus sample and container 
without sample. The uncertainty in the balance certificate 
was stated as ±0,1 mg at a 95% confidence level. A standard 
deviation of 0.0510 was calculated dividing 0.1 by 1.96. The 
run-to-run variability, ±0.1 mg, was estimated by means of a 
Shewhart control graph [9,10]. Combining these two 
components resulted in: 

 

1225.0)09902.0()0510.0(2)( 22 =+=ims  

 
Step 2: Dilution 

 
The uncertainty of the internal volume of the 250 ml 

volumetric flask was indicated by the manufacturer as ±0.15 
ml [11,12]. Since this figure was not given with a 
confidence level and assuming a triangular distribution [13], 
the appropriate standard deviation was calculated as 0.15: 
61/2= 0.0612 ml. 

The effect due to temperature difference, from the 
moment of the flask calibration until the analysis time, was 
calculated as ±3 °C. Since the volume expansion coefficient 
of the liquid (2.1×10–4 °C-1 at 20°C) was considerably 
greater than that of the flask (10×10–6 °C-1 for borosilicate 
glass flasks), only the former was considered. So, the 
temperature effect for the dilution step resulted in ±250 × 3× 
2.1×10–4 = ±0.1575 ml. The standard deviation was 
calculated as 0.1575:31/2= 0.09094, assuming an 
approximated rectangular distribution [13]. 

Combining the two contributions to the uncertainty of 
the 250 ml volume (V250) the result was: 

 

1096.0)09094.0()0612.0)( 22
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 Two ten-fold dilutions were necessary to adjust the 
expected level of cadmium in the solution to the working 
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range of the analytical curve. Contributions due to 
repeatability and variation within specification limits were 
determined and combined for each type of glassware 
available (10 ml pipettes and 100 ml volumetric flasks). 
Table 2 summarizes the calculation of the uncertainties from  
repeatability run-to-run operation and arising from variation 
within specification limits and temperature difference. 
 

Table 2 - Uncertainties due to run-to-run operations,  
manufacturer’s specifications and temperature effect 

 
 

VOLUMETRIC    
MATERIAL  

v mL 

 
s * 

tolerance/31/2 

+ 
Temperature 

effect 

 
Combined standard 

deviation 

Standard 
uncertainty 
(1s - mL)  

Relative 
Standard 

Uncertainty 
(1s/V) 

pipeta 10 mL  0,012   0,00894 (0,0122 + 0,0894)1/2 0,0150 0,00150 
balão 100 mL  0,010 0,0547 (0,0102 + 0,0547)1/2 0,0556 0,000556 
balão 250 mL  0,020 0,1096 (0,0202 + 0,1096)1/2 0,1114 0,000446 
* run-to-run operations estimates by Shewhart Control Charts  

 
 

There was an uncertainty associated with the initial and 
final volumes taken, so the dilution factor uncertainty was 
associated with them. Dilution factors were calculated as: 
 

 

 
where sfactor 10= the standard deviation of the dilution factor.  

 
Step 3: Measuring Cadmium by Flame Atomic Absorption 
SpectrometryUsing a Linear Calibration Function 

 
The calibration experiment was started with the choice 

of a preliminary linear working range from 0.5 to 2 mg.L–1 
cadmium solutions. Five analytical solutions, with 
concentrations of  0.5mg.L–1, 0.75mg.L–1, 1mg.L–1, 
1.5mg.L–1, and 2mg.L–1 were prepared from a 1.000 ± 
0.002g.L–1 cadmium solution. The analytical curve was 
prepared and measured four times in order to estimate day-
to-day variation. Four replicates of each of the lowest and 
the highest concentration of the working range were 
submitted to a linear regression analysis to obtain the 
coefficients “a” and “b”.  
 Homogeneity of variances and linearity were verified by 
a statistical significance test. Tables 3 and 4 summarize 
analysis of variance data and tests for linearity and 
regression efficiency [14]; R2 = 0.9992 and R2max= 0.9994 
were large enough to demonstrate efficiency. Linear 
regression parameters were estimated for sensitivity, the 
slope of the calibration function (a = 0.2358), and for the 
ordinate intercept (b = 0.01419). 

Confidence limits for the intercept were calculated as 
within -0.0094 to +0.0185. Zero is within these calculated  
limits so we assumed a regression line passing through the 
origin. The combination of the uncertainties of the measured 

values and the uncertainties of the regression coefficients 
resulted in the uncertainty of an analytical result. 
 

Table 3 - Analysis of variance parameters 
Sb

2= 1.91511× 10-6; Sa
2 = 7.09549 × 10-7 

 

 
Sources of 
Variation Sum of Square 

Degrees of 
Freedom Mean Square  

 (SQ)  (MQ)  
   totals 1,95053 20 0,0975265 MQT 
  correction 0,08139 1 0,0813960 FC 
  corrected 0,32260 19 0,01697937 MQC 
  regression 0,32235 1 0,32235276 MQR 
  residual 0,00025 18 1,4191E-05 MQE 
  pure error 0,00018 15 1,26333E-05 MQEP 
  linearity 0,00006 3 2,19792E-05 MQL 

 

  
 

Table 4 - Results of linearity and regression efficiency tests 
 
 

 
LINEARITY   Is "a" different from zero? 
Fcalculated = MQL / MQEP = 0,1795 Fcalculated = MQR / MQE = 22 715 
F3 ; 15 ; 0,025 = 4,15 F 1 ; 18 ; 0,025 = 5,98 
Fcalculated < F crítical Fcalculated >> F crítical 
 Linearity is accepted  "a" ? zero 

  
  

EFFICIENCY MAXIMUM EFFICIENCY 
R2 = SQR / SQC = 0,9992 R2

máx =  (SQC- SQEP) / SQC = 0,9994  
Effciency is confirmed.    

  
 
Uncertainty due to variability in “y” was estimated by 

calculating [2,4,14]: 
 

where 
r = number of sample replications, 
Sb

2= MQE / n (contribution due to “b”), 
n = number of standard solutions (working range), 
Sa

2= MQE / Sxx (contribution due to “a”), 
Sxx= Σ(xi – xm)2 
xm = Σxi / n. 

 
 

The diluted solution (one replication, r = 1) resulted in 
0.273 units of absorbance. The following expression 
provided the amount of cadmium present in the diluted 
solution using the calibration function y = 0.2358x + 
0.01419: 

    Absorbance – b  tSyi 

[Cd2+] = ---------------------- ± ------------- 
     a      a 
 
    0.273 – 0.01419       2.101 x 0,003861 

[Cd2+] = ---------------------- ± ---------------------- 
     0.2358     0.2358 
 
     

[Cd2+] = (1.098 ± 0.034) mg L-1 

 
 



 Due to the calibration function, xobserved= 1.10mg L-1 is 
associated with the uncertainty of ±0.03mg L-1 or 3%. 
 
Step 4: Calculation of Final Result 

 
The final result expressed as mg of cadmium per mg of 

solid sample was calculated as 27.4.  
Uncertainty of the final result (27.4mg) was estimated by 

the combination of the components described in Table 5. 
 

Table 5 - Intermediate values and uncertainties  
for cadmium determination 

 

Sources of 
uncertainties 

Value 
(v) 

Standard 
Uncertainty 

(1s) 

Relative standard 
uncertainty 

(1s/v) 
xobs  (mg/L) 1,098 0,01689 *       0,01538 

Vf  (mL) 250        0,1096       0,0004384 
Dilution factor 2 x 10** 0,02234 **       0,002234 

 Initial mass (mg) 56,3        0,1225       0,002176 
* calculated using Sy/a Sx obs = 0,003982 / 0,2358=0,01689   

** corresponds to 2 tem-folds dilutions; 02234,0)0158,0(2 2 =×=s   
 

Accordingly new recommended nomenclature [15], total 
uncertainties as combined uncertainty, uc , and expanded 
uncertainty, U, were calculated, as shown in the following 
equations: 
 
 
   uc 

-------= ±(0.01538)2+(0.0004384)2+(0.002234)2+(0.002176)2 

27.4 
 
uc  = ± 0,01570 x 27.4 

uc =  ± 0.43 

and  

U = ± 2 x 0.43 = ± 0.86 

The final result and uncertainty was (27.4 ±0.9) grams 
cadmium per gram of solid sample or expressed as 27.4mg 
with associated uncertainty of 3%.  
 
 
CONCLUSION 

 
It can be observed that the uncertainty due to xobserved is 

much higher than the other figures. The measured value 1.10 
mg L–1 is associated with an uncertainty of ±0.03 mg L–1, 
due to function calibration. This figure represents an 
uncertainty of ±3% (0.034: 1.098)×100 = 3%). The final 
result for the cadmium determination resulted in 27.4mg 
with an expanded uncertainty of ±0.9 In percentage, this 
represents 3% (0.86: 27.4) × 100 as the uncertainty due to 
the calibration procedure. Hence, the uncertainty estimate of 
the various steps of an analysis demonstrates that the 
calibration step might give an important contribution to the 
uncertainty of the final result. In the present case, it was the 
main factor. Such result claims analysts to a designed 
experiment planning for the calibration function, in order to 
obtain lower limits for uncertainty when linear least square 

fit is considered. Frequently, analysts don’t pay much 
attention to the analytical curve. They just prepare the 
analytical solutions, use the linear least square fit procedure 
and calculate the correlation coefficient R, assuming that if 
this figure is close to –1 and +1, the calibration was properly 
performed. In reality, the regression validity should be 
demonstrated. First the linear regression parameters are 
estimated for sensitivity by means of the slope of the 
calibration function and for the ordinate intercept. By means 
of ANOVA data F-tests for linearity and regression 
efficiency are carried out. In the present example, calculated 
values for R2 and R2

max demonstrate required efficiency.   
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