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Abstract: The paper presents different methods of Machine. The recognition of arrhythmia is proceedadhe
combining many neural classifiers into one ensemblebasis of the registered ECG waveform (QRS segnfent)
system for recognition and classification of arhmta. patients suffering from different kinds of irreguites of

Majority and weighted voting, Kullback-Leibler dirgeence
and modified Bayes methods will
compared. The numerical experiments will be perémm
for the problems concerning the recognition of atit
types of arrhythmia on the basis of ECG waveforfiglid

the heart beats. Two preprocessing techniquesnaptoged

be presented andfor the diagnostic features generation: the higbeder

statistics (HOS) characterization of the QRS com@ed
expansion of the QRS complex into Hermite basistions
(HER). The results of numerical experiments conogrn

BIH AD. the recognition of 6 types of arrhythmia and thenm
sinus rhythm will be presented and discussed.
Keywords: neural classifiers, ensemble of classifiers,

methods of integrations, arrhythmia recognition. 5 THE INTEGRATION METHODS

Fig. 1 presents the general scheme of integradibn
many classifiers into one ensemble system [7]

1. INTRODUCTION

The paper deals with the problem of combining many
neural classifiers into one committee machine perifiog
the task of the recognition of heart rhythms. kingwn fact
that each classifier considers the recognition lerabfrom
different point of view (difference in data prepessing,
recognition algorithm and methodology). Usually far X,
specific application problem each classifier, netyion
different feature sets, may attain different degresuccess.
None of them is perfect or as good as expected.iddweis . .
to combine different solutions of classifiers satth better X Ym
result could be obtained. Combining the trainedvoeits, Pu Cw
instead of discarding them, helps to integratektimvledge
acquired by the component classifiers and in thig wo
improve the accuracy of the final classification.
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Fig. 1: The general scheme of classification usingany classifiers
The paper will present and compare few differenysva The measured signals of the process form the vegtor
of combing neural classifiers into one ensembletesys ~ Subject to the preprocessing in the preprocessiogk$ R
Simple majority voting, weighted voting, Kullbaclebbler ~ (i=1, 2,...,M). The preprocessors may be of various kinds,
divergence as well as the naive modified Bayesstressing different aspects of signal. The featgeseerated
combination will be investigated and checked on theby the preprocessors form the vectogsapplied to the
examples of the real life problem of arrhythmiaogmition ~ neural classifiersC.. These vectors may vary in many
by ECG waveform analysis. The considered task ef th aspects, including even the size (the number afrdistic
arrhythmia recognition is an important pr0b|em in featUrES). Each classifier haBOUtpUtS (\' ClaSSGS) and the
automated pattern recognition in medicine [1,4,7]. output signals of each classifier are arrangedhénform of
vectorsy; for i=1, 2, ...,M, whereM is the number of
classification channels. These vectors are combindte
integrating unit to form one final output vectarof the

classifier zOR"). The highest value of elements bf
indicates the membership to the appropriate class.

The individual classifiers considered for integratiare
built on the basis of different classifier platfarand data
preprocessing methods. The considered classifietsde:
the neuro-fuzzy networks of the modified Takagi-Sugr
Kang structure, the hybrid network and the Suppedtor



The integration of many classifiers into one endenolh
networks may be done using different methodologdi¥s.
will apply here four different approaches. Theyline: the
simple majority voting, the weighted voting, Kultda
Leibler divergence method and the modified Bayes
combination.

2.1. The majority voting

Suppose we havMl neural network classifiers, which
were trained on the same data. The committee ofethe
classifiers assigns the pattern to the class thadirss the
majority of the votes. Each classifier has the sarfieence
on the final score. The majority voting is effeetiwhen the
probability pr for each classifier to give the correct class
label is equal for all input vectors and at the same time
the classifier outputs are independent. Howeven @vehis
case we can expect improvement over the individual
accuracypr only whenpr is higher than 0.5 [6]. In the other
case the majority voting integration does not brangy
improvement over the individual classifier results.

2.2 The weighted voting

If the classifiers in the ensemble system are hthh@® same
accuracy then it is reasonable to give more compete
classifiers more power for the final decision. TMaeighted
majority voting combines the results BF classifiers with
the weights according to the accuracy of each ifieiss
obtained for the learning data. This is done thiotige
integrating matrix W to form one response of the
classifying system [11]. Let us denoteypyhe vector of the
classification results of ith classifier and khythe output
vector of the ensemble system. The number of ilegrn
data pairs is denoted ly The result of integration of all
classifiers at the presentation of one particulut vector
Xin can be expressed now by the relation

O

z=Wy
where y = [yI,y;,...,y{,l]T and W O RM™ | The position
of the highest value element pfindicates the membership
to the appropriate class. In adjusting the valdfedements
of the weight matrixV we have applied the minimization
of the sum of squared error of the whole ensemblth®
classifiers, measured on the learning data set. [Lhis
minimization leads to the solution expressed thhotige

Moore-Penrose pseudoinverse in the forWW =DY",
whereY is the NM x pmatrix composed op vectorsy

corresponding te results of individuaM classifications for
learning data anb is the appropriatéN x p matrix formed

by the destination vectors associated with eaatmileg pair
of data.

2.3 Kullback-Leibler divergence method

Kullback-Leibler divergence measures the distance
between the prior distribution and a posteriorritistion. It
is interpreted as the amount of information needed
change the prior probability distribution into tpesterior
one. In Kullback-Leibler divergence method [6] we
calculate the ensemble probabilitysupporting the jth class

given the actual input vectok,,, as the normalized

arithmetic mean
M

>4, )

whered;; means the probability of indicatinth class byith
classifier for the data of this class. This probgbiis
determined in the testing mode for each multiplépou
classifier on the basis of the signal values omeatdput. In
the case of one output classifier (for example SN
apply the one against one approach and the pratyadbil
each class is equal to the ratio of the numbeiiabries of

_1
,UJ—V

jth class to all possible indications. Observe thiatwo

classes and 0-1 membership value to the particidas the
Kullback-Leibler method is equivalent to the simple
majority voting.

2.4 The modified naive Bayes combination

This method assumes that the classifiers are niytual
independent given a class label. We apply here the
modification of the naive Bayes combination [6] c&nit
gives more reliable results at zero estimated poitibaof
any classifier. According to this modification teasemble
probability 4 supporting thgth class is determined on the
basis of the known results of testing the netwarksthe
learning data and is given in the form

M cmfg +1UN
N— 3)
n +1

wheren; is the number of elements in training set for £jas
and cmj is the element of the confusion matrix generated

H;

i=1

i)
S
for learning data ofth classifier. The j(s)th entry of the
confusion matrix is the number of elements of théadset
whose true class label wgsand were assigned bigh
classifier tosth class.

3. THE NEURAL CLASSIFIERS

Different classifier solutions can be applied imgiice.
In this paper we will consider only the neural sléiers of
different types. The considered classifiers includee
neuro-fuzzy networks of the modified Takagi-Sugétaomg
(TSK) structure, the hybrid network and Supporicide
Machine (SVM).

3.1 Hybrid fuzzy network

The hybrid fuzzy network [10] is the combinationtbé
fuzzy self-organizing layer and the multilayer psgtron
(MLP) connected in cascade (generalization of theadled
Hecht-Nielsen counter-propagation network). Thezju
self-organizing layer is responsible for the fuzzy
clusterization of the input data, in which the ot is pre-
classified to all clusters with different membepsigrades.
The particular membership value of some data vegttw
the cluster of the centeyis defined by the equation

1
u;(x;) = _(—)C
Y zk=l dij /dkl

(4)



wherec is the number of clusters ardj =||xj -C || The

position of the center of each cluster is adjustedhe
learning procedure over all learning vectgysin our work
we have applied the c-means algorithm [5].

The signals of the self-organizing neurons (the
membership grades) form the input vector to theosec
subnetwork of MLP. MLP consists of many simple rgur
like processing units of sigmoidal activation fuoot
grouped together in layers. Information is procddseally
in each unit by computing the dot product betwelea t
corresponding input vector and the weight vectorthaf
neuron. Traditionally training the network to precdua
desired output vector when presented with an imegator
involves systematically changing the weights ofraurons
until the network produces the desired output withigiven
tolerance (error).

The MLP part of the hybrid network is responsilde f
the association of the input vector with the appiaip class
(the final classification). It is trained after tHist self-
organizing layer
algorithm is identical to that used in training Ma®ne [2].

3.2 TSK neuro-fuzzy network

Another neuro-fuzzy network involved in comparissrthe
modified Takagi-Sugeno-Kang (TSK) network [12].idt
implemented in the neuro-like structure realizihg fuzzy
inference rules with the crisp TSK conclusion, didsd by
the linear function. The TSK network can be asgedia
with the approximation function yy

¥0) =350, P+ 3ok, ®)

wherep;(x) is described by (4) angl are the coefficients
of the linear TSK functions; (x) = p,, + Zl’ll Pk X -

The parameters of the premise part of the inferenles
(the membership valugsg(x;)) are selected very precisely
using Gustafson-Kessel self-organization algoritfi2].
After then they are frozen and don't take part umtHer
adaptation. It means that at application of theiinygctorx;
(=1, 2,..p) to the network, the membership valugé)
are constant. The remaining parametgrsfghe linear TSK
functions can be then easily obtained by solvirgy gbt of
linear equations following from equating the actualues
of y(x)) and the destination valuels for j=1, 2, ..., p. The
determination of these variables can be done insteye by
using the singular value decomposition (SVD) aldnoni
and the pseudo-inverse technique.

3.3 SVM classifier

The last classifier involved in the ensemble is the
Support Vector Machine network [13,14]. It is knoasmthe
efficient tool for the classification problems, afvery good
generalization ability. The SVM is a linear machine
working in the high dimensional feature space fatnby
the nonlinear mapping of the n-dimensional inputteex
into a K-dimensional feature spadé&>f) through the use of
the nonlinear function ¢(x). The equation of the

has been established. The training

hyperplane separating two classes is defined imdeof
K

these functionsy(x) =ij¢j(x)+b=0, whereb is the
j=1

bias, andw; the synaptic weight of the network. The
parameters of this separating hyperplane are adjust a
way to maximize the distance between the closest
representatives of both classes. In practice thlenileg
problem of SVM is solved in two stages involvingeth
solution of the primary and dual problems [13,14].

The most distinctive fact about SVM is that the
learning task is simplified to the quadratic progmaing by
introducing the Lagrange multipliers; . All operations in
learning and testing modes are done in SVM usingéte
functions K(x,x;), satisfying the Mercer conditions

[13,14]. The most known kernels are Gaussian, ohjal,
linear or spline functions. The output signgk) of the
SVM network is finally determined as

Y(X) = a0 KX, ) +b (6)

where d, = %1 is the binary destination value associated

with the input vectorx;. The positive value of the output
signal means membership of the vectaio the particular
class, while the negative one — to the opposite. one
Although the SVM separates the data into two ckassdy,
the recognition of more classes is straightforwdrygl
applying either one against one or one againsiathods
[3]. The more powerful is one against one approach,
which many SVM networks are trained to recognize
between all combinations of two classes of data. IFo
classes we have to trailN(N-1)/2 individual SVM
networks. In the retrieval mode the veckobelongs to the
class of the highest number of winnings in all carabons

of classes.

4. PREPROCESSING OF THE ECG SIGNALS

The important step in building the efficient cldissi
system is the generation of the diagnostic feafurasthe
basis of which the classifier will recognize thetea. In
our approach to the problem we have applied two
preprocessing methods of the data. One appliesi¢heite
representation of the QRS complex of the ECG amd th
second characterizes the QRS complex by the cutsulan

4.1 Hermite representation of theECG

In Hermite basis function expansion method we regme
the QRS complex by the series of Hermite functipfis
Denote the QRS complex of the ECG curve Aft). Its
expansion into Hermite series may be written invlag

X0 = Y0 t0) @

where ¢, are the expansion coefficientgg (t,o) - the
Hermite basis functions of" order ands is the width
parameter.

The coefficients, of Hermite basis functions expansion
may be treated as the features used in the reamynit



process. They may be obtained by minimizing the sumdifficulty of the accurate recognition of the arthmia type
Th be obtained b h mdifficulty of th iti f the arthmi
squared errorE = 3" [x(t) - S @ (t o) 2. This error is the large variability of the morphology of theEG

a . Z'[ t) Z”:.O A )J . ) rhythms belonging to the same class [8]. Moreokerteats
function rep_re_sents the set of linear equatlonb \r\espec_t belonging to different classes are also morphokilyi@like

to the coefficientss,. They can be easily solved by using {4 each other. Hence the confusion of differenssss is
singular value decomposition. very likely. In our numerical experiments we have

In numerical calculations, we have presented thes QR considered six types of arrhythmia: left bundlenisrablock
segment of the ECG signal by 91 data points ardghacR (L), right bundle branch block (R), atrial premaubeat
peak (45 points before and 45 ones after). At taead (A), ventricular premature beat (V), ventriculautter wave
sample rate 360 Hz, this gives a window of 250 wisich ~ (I), ventricular escape beat (E), and the waveforms
is long enough to cover most of QRS signals. Tha las ~ corresponding to the normal sinus rhythm (N). Akde 7
been also additionally expanded by adding 45 zeremch  rhythms have been discovered at one patient. Sckitd of
end of the QRS segment. The extra zeros are adiled €xperiment may be regarded as the individual diassi
enforce that the beats are closed to zero outsideQRS  specialized for the single patient. 3500 data peanse been

complex. The widths was chosen proportional to the width generated for the purpose of learning and 3068 weeel
of the QRS complex. for testing purposes. Table 1 presents the numifer o

. representative of the beat types used in testihg on
The modified QRS complexes have been decomposed

onto a linear combination of 15 Hermite basis fiord. ~ Table 1 The number of testing samples of each begpe

These coefficients t_ogether with 2 classical f&a_iurthe Beat | N L R A Vv | E
instantaneous RR interval of the beat (the timenspa tvpe
between two consecutive R points) and the average R yp
interval of 10 preceding beats, form the 17-elenfeature No 935 | 561 | 485| 398 451 201 37
vectorx applied to the input of the classifier.

4.2 HOS characterization of the ECG The limited number of representatives of some Igads

Another approach to the feature generation is the(for example E or |) is the result of the limitatiof the
application of the statistical description of th&®curves. MIT BIH database [8].
Three types of statistics have been applied: tlworsk, 5.2 Theresults of numerical experiments
third- and fourth-order cumulants [9]. Applicatiai the
cumulant characterization of QRS complexes redubes

relative spread of the ECG characteristics belqnginthe ~ N@ve relied on two sets of features. One set &@eelto the
same type of heart rhythm and in this way makes thehigher order statistics (HOS) and the second tdHienite

classification easier. As the features used in fleart 2SS function expansion (HER) of the QRS parhefECG
rhythm recognition we have applied the values o t waveform. Three different classifiers have beenliagp
cumulants of the 2nd, 3rd and 4th orders at fioints SVM, Hybrid and TSK. All of them have been trained
distributed evenly within the QRS length (for theizand ~ Separately on both sets of features (HOS and HEW) a
4th order cumulants the diagonal slices have beerfh€ir results have been combined together. In g the
calculated). For 91-element vector representatibrthe ~ €nSemble of 6 recognition systems have been create
QRS complex the cumulants corresponding to the kige integration of the results of all classifiers haseb done
of 15, 30, 45, 60 and 75 have been chosen. Addifipwe using four presented above methods. We will linhie t
have added two temporal features: one corresponditite _presentation of the result_s to thg testing modg, dhé most
instantaneous RR interval of the beat and the skconiMPortant from the practical point of view. The ulis are
representing the average RR interval of 10 precebigmts. ~ 91Ven in the form of the relative classificationrat

In this way each beat has been represented hetfeeky7- calculated as the ratio of all misclassificatiorses to the
element feature vector, with the first 15 elementsumber of samples used in testing.

corresponding to the higher order statistics of @B@plex Table 2 presents the results of testing all indigid
(the second, third and fourth order cumulants, eachclassifiers and the ensemble system integratedrdiogpto
represented by 5 values) and the last two - thepdeah  different methodologies. All classifier networksvieabeen

In solving the problem of arrhythmia recognition we

features of the actual QRS signal. first learned on the same learning data set amitdsted on
another testing data set, the same in all cases. bEst
5. THE NUMERICAL EXPERIMENTS results of single classifiers refer to the applamainf SVM-
HER methodology (Hermite expansion for generatidn o
5.1 The data base features and SVM network classifier) and Hybrid-HOS

(HOS representation for generation of features taytarid
network classifier). The worst results have beetaiobd at
the application of TSK-HER solution (TSK classifiar

The numerical experiments have been directed fer th
recognition of the heartbeat on the basis of theGEC
waveform. The recognition of arrhythmia is procekds L . . N
the basis of the QgRS segmentsytof the rcggistered Ecéombmanon with Hermite preprocessing of data).eTh

waveforms of 7 patients. The data have been taken fhe relative difference between the accuracy of thet laesl
MIT BIH Arrhythmia Database [8]. The important worse classifier is very large (more than 60%)sfite of



large difference of the quality of the individugcognition

The notations used on the horizontal axis of tharé mean

systems even the simple majority voting was able tothe type of the recognition system, for example BRH

improve results significantly. However the bestutsshave
been obtained at the application of the weightegbrita
voting. The best individual result of 1.96% of tala
misclassification (SVM-HER) has been improved t87%
(over 30% of relative improvement) in this case.s@be
that all integration methods have improved the Ifina
accuracy of recognition in comparison to the bedividual
classification system.

Table 2 The average misclassification rate for theamily of 7 beat
types (the individual classifiers and ensemble ofassifiers)

No Classifier system Testing error
1 Hybrid-HER (H-HER) 2.93%
2 Hybrid-HOS (H-HOS) 2.35%
3 TSK-HER (T-HER) 3.26%
4 TSK-HOS (T-HOS) 2.71%
5 SVM-HER (S-HER) 1.96%
6 SVM-HOS (S-HOS) 2.80%
7 Majority voting (MV) 1.63%
8 Weighted voting (WV) 1.37%
9 Kullback-Leibler (KL) 1.47%
10 Modified Bayes (MB) 1.56%

Generally we may state that integration of mangsifeéers
improves the recognition results significantly. The

improvement rate depends on the applied integration

scheme and the quality of the individual classifidfig. 2
presents the relative improvement of the final sifecation
results of the ensemble obtained thanks to theiexppl
integration method. Fig. 2a illustrates the impmeat with
regards to the best individual classifier (SVM-HE&)d
Fig. 2b to the worst one (TSK-HER).

Relative comparison of improvement of recognition accuracy of different classifiers

20

Ju L
-20 l l
-40
1 1
1 2 3

-60

4 5 6 7 8
H-HER H-HOS T-HER T-HOS S-HER S-HOS MV wv

7 8 9

1 2 3 4 5 6 10
H-HER H-HOS T-HER T-HOS S-HER S-HOS MV wv KL

MB

Fig. 2 The relative improvement of different integation methods with

respect to a) the best, b) the worst individual elssifier

means Hybrid-HER system, etc. It is seen that éhative
improvement of the best integration scheme (weijhte
majority voting) with respect to the best individlakassifier
(SVM-HER) is over 30% and with respect to the wansé¢
(TSK-HER)) almost 60%. The results prove that irdtigg
the results of many classifiers of even not equality
brings the significant improvement of the qualityf
performance of the whole classifier system.

The quality of results can be assessed in detailthe
basis of the error distribution within different dietypes.
Table 3 presents the distribution of classificaterors for
the testing data in the form of the confusion matiivided
into different beat types. These results correspanthe
best integration scheme. The diagonal entriesisfrtfatrix
represent right recognition of the beat type and dif
diagonal — the misclassifications. The column pneséow
the beats of particular type have been classifide row
indicates which beats have been classified as ype
mentioned in this row. Thanks to the confusion ikatre
can easily analyze which classes have been confysedr
classifying system.

—

Table 3 The confusion matrix of the integrated clasifying system for 7
types of rhythms of testing data

N L R A \' I E
N 921 | 1 1 12 0 0 0
L 1 553 | O 2 4 1 0
R 1 0 482 | 1 0 1 0
A 7 0 2 388 | 1 0 0
B 0 2 0 1 488 | 0 0
I 0 0 0 1 2 198| O
E 0 1 0 0 0 0 36

The analysis of the error distribution shows thane
classes are confused more frequently than the otlteis
evident that most misclassifications have been citterin
between two classes: N and A (12 N-rhythms haven bee
classified as A-rhythms and 7 A-rhythms have been
recognized as N-rhythms). This confusion is thaultesf
large similarity of ECG waveforms for these two tihms.

The last but not least aspect of heart beat retiogris the
analysis of how the abnormal rhythms have beenratgzh
from the normal one. In practice the most dangeoaise is
when the ill person is diagnosed as the healthy (fadee
negative diagnosed patient). To deal with such eashave
introduced the quality measure equal to the nundlfeall
false negative diagnosed patients. Analyzing th&ioed
results we have noticed the evident improvementhif
quality measure for the integration schemes, bath i
learning and in the testing mode. Table 4 pres#ms
number of the false negative diagnoses for theviddal
classifiers and for all integrated systems under
investigation. The results correspond to the tgstiata, not
taking part in learning. The best results in terofisthe
number of the false negative diagnoses have begineld
for most of the integration methods (except Kullbac
Leibler approach). Fig. 3 presents the distributainthe



false negative cases for all
individual classifiers and all integration schemes)

Table 4 The comparison of the number of false negat diagnoses for
different solution of the classifying systems

No Classifier No of false

system negative
cases

1 Hybrid-HER 22

2 Hybrid-HOS 10

3 TSK-HER 23

4 TSK-HOS 36

5 SVM-HER 14

6 SVM-HOS 11

7 Majority voting 9

8 Weighted 9
voting

9 Kullback- 11
Leibler

10 Modified Bayes 9

The interesting is that most of the integrationesnbs have

produced the same number of false negative diagnose
obtained at

much better than the average number
application of individual classifiers. The Kullbatkibler
method has produced slightly worse results.

Comparison of false negative diagnoses of different classifier systems
40 T T T T T T T

8
wv KL

1 2 3 4 5 6 7
H-HER H-HOS T-HER T-HOS S-HER S$-HOS MV

Fig. 3 The comparison of the number of the false gative cases
corresponding to individual classifiers and to alensemble systems

6. CONCLUSIONS

The paper has presented and compared differenpaeetf
integration of the results of many individual ndura
classifiers combined into one classification systéfhe
applied classifiers include: hybrid neural netwonkeuro-
fuzzy TSK network and support vector machine cfagsi
The ensemble system applied majority and weightethg,
Kullback-Leibler divergence and modified Bayes nogkh

proposed solutionse (th

The experiments performed for seven heart beatstype
taken from MIT BIH AD have shown that integratiohtbe
results of many classifiers improves the qualitytha final
classification system. The improvement is obserwed
terms of the accuracy of recognition as well asthe
number of false negative diagnoses. To the besgriation
approaches belong the weighted majority, modifieyds
and Kullback-Leibler methods. They have resultedhe
reduction of not only the total classification es@nd at the
same time also in the reduction of the most dangefalse
negative cases of diagnosis. The results presdntebe
paper confirm our conjecture that a highly reliatissifier
can be obtained by combining a number of classifignich
exhibit an average performance.
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