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Abstract: In this paper we present an improved method for 
the acquisition, filtering, compression and clinical parameter 
identification of the ECG. The method involves the use of 
an improved instrumentation setup with high resolution and 
sample rate, as well as DSP monitored automatic gain and 
offset control (AGOC) which maximizes the range of the 
signal. It also involves the fitting of the signal with a 
nonlinear model consisting of six generalized Gaussians 
(with skew). The method further includes the use of sine-
fitting techniques to selectively remove electromagnetic 
interference such as the power-line (50 Hz or 60 Hz 
component). We will further describe the experimental setup 
developed, which is a DSP based portable 3-lead device, and 
show some experimental and characterization results.  
  
Keywords: ECG acquisition, clinical model template 
nonlinear fit, sine-fit. 

1.   INTRODUCTION 

Most current filtering, compression and ECG wave 
detection schemes are relatively blind to the actual 
morphology of the wave. They rely on time-frequency 
schemes like filter banks [1], wavelets [2], clustering [3], 
singular value decomposition [4], stochastic methods with 
blind source separation [5, 6] and neural network 
approaches [7].  These methods use mostly the knowledge 
of the frequency band of interest disregarding the 
morphology of the ECG being also, to some extent, sensible 
to base-line wander, power-line interference and 
electromyograms (EMG). Adaptive filtering, like the 
methods proposed in [6, 8], require another reference signal 
or a generic model of the signal as an input which seldomly 
is available. 

In this paper we propose the use of a nonlinear fit of one 
period of the ECG with a template of 6 generalized 4-
parameter Gaussian functions. The nonlinear fit algorithm is 
based on the Marquardt-Levenberg compromise. This 
method allows for an extraction of some clinical information 
regarding the ECG in an optimized set of parameters 
describing the relative location, width, height and skew of 
each of the six features of the ECG (P, Q, R, S, T and U). 

To maximize the efficiency of the fitting algorithm and 
to increase the signal-to-noise ratio (SNR) of the ECG we 
developed a portable, DSP based, wireless acquisition 
module which incorporates a DSP monitored automatic 

offset and gain control, and a 4 parameter sine-fitting 
algorithm for extraction of coherent electromagnetic 
interference. With this approach we are able to maximize the 
resolution of the ADC, being able to use up to 75 % of its 
input range, increase the signal gain and suppress both the 
base-line wander and power-line interference. We further 
use the most significant 15 of an 18-bit ADC (AD7678) at a 
high sampling rate of ~1 kSps to improve the SNR. The high 
sampling rate is important because the solution to the fit in 
the hyper-plane of the error gets narrower the more points 
the ECG has and upsampling is counterproductive since it 
increases the relative weight of noise.   

2.   METHODS 

We will now present a detailed description of the 
electronic instrumentation setup with its AGOC system and 
the template fitting method. 

2.1.  Hardware 

The electronic instrumentation consists in a portable, 
battery operated, DSP-based, wireless acquisition system 
whose block diagram is depicted in fig. 2.1 and where are 
clearly identified the amplification, sampling and processing 
and communication stages. 

 

Nowadays, the ECG systems commercially available 
present in the market use low levels of signal amplification, 
essentially to accommodate the heavy base-line wander 
inherent to cardiac signal. The fluctuation of the signal mean 
introduces problems in the signal measurement. Since these 
fluctuations might be large in amplitude and of random 
nature, the gain levels must be low when no type of method 
is used to compensate or suppress the phenomenon. This 

Fig. 2.1.  Acquisition system developed for the ECG signal 
recording. 

 



reality is visible in fig. 2.2, which depicts the high resolution 
acquisition of a real  

 

healthy cardiac signal. This signal was extracted from the 
PTB database (MIT-BIH) [9, 10], and acquired at 1kHz 
sampling frequency with a 16bit ADC. Careful analysis of 
the wave reveals that the ADC dynamic range put to use by 
the acquisition topology represents only 1% of the total 
dynamic range, which is clearly low. 
 The electronic platform implemented to acquire the 
signal and to perform some of the signal processing was 
devised so that it would be possible to substantially reduce 
the effects of the base-line wander. The control strategy used 
to achieve such a goal is depicted if figure 2.3. To control 
the 

mean fluctuation we introduced a feedback loop using an 
DAC (DAC5342). The feedback loop allows compensating 
the slow fluctuations of the signal, permitting the 
introduction of higher levels of amplification using a 
digitally programmed differential gain amplifier 
(PGA2500). This control structure, designated as AGOC, is 

possible thanks to the Digital Signal Processor (ADSP-

2188N), which executes a 2 step cyclic algorithm (depicted 
in table 2.1) that manages the gain and offset compensation 
values.  
 Effectively this control topology provides us with the 
means to define (as in figure 2.4 if one considers the 
dynamic range equal to the graph boundaries) the percentage 
of the total dynamic range that the signal will use and the 
signal placement within the total dynamic range. This 
adjustment capability brings obvious improvements to the 
system’s effective resolution.  
 

 
 

2.2. Power-line interference removal using Sine-fitting  

Very synthetically, the acquired data goes through a 
power-line identification and suppression algorithm which 
consists in an interpolated DFT of the data for accurate 
identification of the power-line frequency, 4 parameter non-
linear sine-fitting for precise parameterization and time 
suppression using a reconstructed model of the interference. 

In the interpolated DFT  [11, 12], knowledge of the time 
window used allow us to fit the amplitude of the two bins 
nearest to the frequency to be identified with the analytical 
expression of the Fourier transform of the window. In our 
case the window is rectangular and the fit is fairly simple. 
Once the fit is achieved, the determination of the frequency 
becomes simply the value at which occurs the maximum of 
the function used for the fit. This frequency is used as a 
starting point for the iterative process of fitting the sine 
wave since the regression is not linear in the coefficients.  

The “blind” path taken by the parameter vector in the 
solution space is governed by the Levenberg-Marquardt 
algorithm [14] which appears to provide a good compromise 
between convergence speed, robustness and final bias. 

From the knowledge of the parameters the interference 
can be modelled in time and subtracted from the acquired 
signal. 

 
 

Fig. 2.4.  Example of the AGOC system operation. Two waves are 
presented, the initial and the transformed one exhibiting better 
effective resolution. 

Fig. 2.3.  Control topology devised for the base line wander 
compensation, used in the acquisition system. 
 

Fig. 2.2.  Healthy ECG signal extracted from the MIT database, 
belonging to the PTB. Init. state: Calibration (standard conditions) process to 

make the first precise estimation of mean value using 
low values of gain.  
 
Def. state: Definition of the desired dynamic range 
occupation and of the signal mean placement in the 
available dynamic range. 
 
While (1) 
 

1º -  Estimate biological signal mean, considering 
present gain and compensation offset. 

 
2º - Compute the future values of gain and 

compensation offset, respecting the parameters imposed 
in the definition state for the dynamic range. 

Table 2.1. Steps of the algorithm used to compensate the base-line 
wander, executed in the DSP. 



Algebraically the regression model can be expressed as, 
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also evaluated at iteration (i). 
 In each iteration the increment vector for the parameters, 

θδ
%

, is determined by, 
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where 
%
I is the eye matrix and ξ  is the adaptive coefficient 

whose behaviour is determined by the algorithm in table 2.2. 
The parameter vector is updated through, 

 ( 1) ( ) ( )
θθ θ δ+ = +

% % %

i i i . (5) 

 
The suppression is achieved by subtracting an analytical 
replica of the power-line interference, obtaining a new 
sample vector, 

 ( ) ( ) ( )f f fy y J θ ε= − ⋅ =
% % %% %

, (6) 

where (f ) corresponds to the last iteration. 
This technique of suppressing power-line interference is 

equivalent to the use of an infinitely narrow notch filter 
centered on the frequency of the mains.  

2.3. Generalized Gaussian Template Non-linear fit 

This method uses a multiresolution wavelet transform 
procedure [13] for identification of the R feature, 
localization in a continuous ECG, with local maximum 
search for better time resolution. This enables the 
segmentation of a continuous ECG signal vector in its 

periodic heart beats, in a way that will permit the use of the 
non-linear representation model. 

The non-linear model consists of the sum of six 
generalized Gaussians, as expressed by, 
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Each of the ECG features is described by a generalized 

Gaussian exponential defined by, 
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where f is the scaling factor, a is the time location, d is the 
aperture and e the skew of the Gaussian. The template 
defines those parameters individually for each of the 6 
features. In this way the template can freely adapt to other 
morphologies of the ECG period that might depict 
pathologies. In fig. 2.5  can be seen the representation of a 
generic (simulated) heart beat using the non-linear model 
(template) for the coefficient values present in the table 2.3.   

The non-linear model shown in fig. 2.6 is a template. 
The goal is to describe any heart beat period, healthy or 
unhealthy, using the given template. To describe the real 
data using the non-linear model, iterative methods are used. 
Specifically, the method used to compute the parameter 
values of the model, which minimizes the error between the 
adaptive template and the real signal we pretend to represent 
through the model, is the Levenberg-Marquardt Method 
[14], similar to what was done in section 2.2 for the power-
line suppression. 

 

 

Fig. 2.6.  An example of a nonlinear fit where is shown the acquired 
ECG (blue, solid line), the starting template (black, dash dot line ) 
and the final fit (red, dashed line). 
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Fig. 2.5 Non-linear model created to 
represent a heart beat, using 
coefficients in table 2.3. 

Table 2.3. Coefficients used to 
construct the simulated wave of 
an heart-beat. 

Table 2.2.  Steps of the Levenberg-Marquardt algorithm [14]. 



The iterative process uses as initialization the template 
mentioned above, described by the 24 parameters in 
table 2.3. Preceding this process, the template is scaled, 
dilated or contracted so that the initialization is the best 
possible, taking into account the previously assessed 

heartbeat interval. Considering ( )0θ
%

 the 24 parameter 

initialization, the iterative walk through the solution space is 
defined by the equation, 
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 (eq. 7) andξ  the 

adaptative coefficient whose behavior is determined by the 
algorithm in table 2.2. For the correct operation of the 
algorithm described in table 2.2 is also mandatory to 
compute the following linearity coefficient, 
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which quantifies the quality of the linear approximation 
achieved in eq. (10). An example of a nonlinear fit can be 
seen in fig. 2.6 in which are represented the starting 
template, the acquired waveform and the final fit. 

 
 Clearly this approach will result in a very compact 
representation of the electrocardiogram since, for each 
period only 24 parameters are necessary. The level of 
compression in the representation is variable, depending on 
the sampling frequency of the signal acquisition system. 
Other interesting characteristic, intrinsic to the 
representation (error, residue), is the filtering obtained, 
which is depicted in the template, fig. 2.5. 

The substantial shrinkage in the representation space of 
the electrocardiogram period has obvious advantages in the 
field of pattern recognition, since it eases the space of search 
and increases insensibility to parameters as sampling 
frequency. 

 An important question that might arise refers to the need 
of special templates for the cases not covered by the actual 
template (pathologies). As a matter of fact the solution to 
this problem lies on the robustness of the Levenberg-
Marquardt algorithm. Since we are analysing signals 
composed by many cardiac periods, the 2 first periods of 
those signals can be used to create a new template. This 
means that, if one uses the previous non-linear fit as an 
initialization (template) to the following non-linear fit, after 
2 periods a new template is created, which is more adequate 
for the subject under study. Genetic algorithms are also 
being considered for the estimation of the starting template 
to guarantee the global minimum is found. 

 

3. Experimental Results 

After the above explanation of the developed system 
hardware and signal processing algorithms we are now 
ready to analyze the extracted results. 

Regarding the hardware experimental results the figure 
3.1 depicts two different ECG signal periods, b) extracted 
from the high resolution ECG PTB [9, 10] database and a) 
extracted from one of the authors with the hardware setup 
implemented. Comparing the signals, and taking in 
consideration that the PTB system uses a 16 bit ADC to 
perform the signal acquisition it is possible to infer that the 
PTB signal only makes use of 1% of the total dynamic range 
whereas our signal employs 25% of the available dynamic 
range to represent the ECG signal. 

 
 Analyzing a continuous acquisition of an ECG register 
one easily understands the mentioned problems caused by 
the base-line wander. In fig. 3.2 is possible to interpret two 
continuous registers. Signal a) belongs to one of the authors 
and was acquired with the AGOC system disconnected. 
Signal b) was extracted from a healthy patient present in the 
PTB database.  

 
The behaviour of both signals is very similar, since the 
AGOC system is disconnected the signal acquired presents 
low levels of gain and no base-line wander compensation as 
like any of the PTB database signals. 

When the AGOC system is used the signal acquired 
presents a level of effective resolution very high 
comparatively with the PTB high resolution signals. In 
figure 3.3 a) one can observe a continuous register 
presenting a controlled base-line wander and amplification 
level. In figure 3.3 b) is depicted a 10 second ECG signal 
(detail from figure 3.3 a) from the author. The ellipses 
exhibit clear cases of the offset compensation performed by 
the AGOC system. 

 

Fig. 3.2.  Continuous acquisition  of ECG signals. Signal a)  
belongs to one of the authors and it was acquired with the AGOC 
disconnected. Signal b) was extracted from PTB [14] database. 

a) b) 

Fig. 3.1.  Real Healthy ECG signals. Signal a) was acquired with the 
electronic setup described in section 2.1, with the AGOC connected 
and signal b) was extracted from the high reolution database PT B. 

a) b) 



In terms of algorithmic work we attained very promising 
results. In figure 3.4 it’s possible to analyze the non-linear 
fitting algorithm applied to two different ECG signal 
periods. Figure 3.4 a) and c) presents the original signal 
(solid line) we pretend to represent and the ECG template 
(dashed line), algorithm initialization. In figure 3.4 b) and d) 
one can verify the results of the non-linear fit, in solid line 
the original signal and in a dashed line is the resulting fit. In 
this case the original signal presents an offset relatively to 
the non-linear fit to improve the results visualization.  

 

 
 

Analyzing the fitted signal it is obvious that a very selective 
filtering has been performed, and considering that for each 
period only 24 coefficients are required, an high 
compression can be achieved. This corresponds to a lossless 
compression and filtering, assuming that all the relevant 
information in a period is given by these features. The level 
of compression is obviously dependent on the sample 
frequency of the acquired signal. For example, if the signal 
sampling frequency is 1kHz (high resolution signal) and the 
cardiac period is 1s, the rate of compression is 20. In the fit 
case of figure 3.4 c) d) one can verify the robustness of the 
non-linear fit method, since the template used as 
initialization is completely inappropriate. Yet, the algorithm 
still manages to make an extremely good representation of 
the original pathological signal. 

In figure 3.5 a) b) c) and d), are depicted the results from 
the application of the non-linear fit algorithm to continuous 
ECG record. After applying the segmentation process that 
allows for an accurate identification of the ECG R 
complexes, the non-linear fit is applied to each of the 
isolated signal periods. The outcome is a smoothed  
continuous ECG record with good levels of compression. 

 

 

An electrical characterization of the acquisition channel was 
performed in which the total harmonic distortion plus noise 
(SINAD) was found to be 89.3 dB, close to the theoretically 
maximum of 92 dB for a 15 bit converter. The phase 
response was found to be linear from DC to 450 Hz. 

4.   CONCLUSIONS 

  
 The work presented here relates to two major areas, 
electronics and signal processing. In each of them is 
presented an original contribution. 
 The first novelty is associated with the experimental 
platform designed to acquire the ECG signal. This platform 
presents an alteration relatively to the common ones, a 
feedback loop that allows for the compensation of the signal 
base-line wander. This fact enables the use of higher levels 
of amplification in the amplification stage, avoiding 
saturation and allowing for an acquisition with enhanced 
effective resolution. 
 In the field of signal processing a method for signal 
representation and morphological identification was 
devised. This method makes use of 6 generalized Gaussians 
to represent each of the ECG period relevant features. To 
find the specific set of parameters for a given ECG period a 
non-linear fit based on the Marquardt-Levenberg algorithm 
is executed. This process presents signal filtering, good 
compression levels and an elegant way to model the ECG 
signal.  

Fig. 3.3.  Continuous ECG signal  from the author, with AGOC 
connected a). Signal b) is a Zoom from  signal a), where you can 
see in red circle the offset compensation working. 
 

a) b) 

Fig. 3.4.  Non-linear fits performed to real signals, the top row is 
an author’s signal and the bottom row presents a bundle branch 
block signal. In figures a) and c) one has in dashed line the 
algorithm initialization and in continuous line the original wave. 
Figures b) and d) present the fit results in dashed line and the 
original in continuous, which is scaled for better visualization. 

a) b) 

c) d) 

a) 

c) 

b) 

d) 

Fig. 3.5.  First column (left a) and c)) depicts two signals (4 periods) 
taken from the PTB [13, 14] database, the top one is healthy and the 
other is a disease, bundle branch block. The right column is the 
result of applying the non-linear fitting algorithm to the PTB real 
signals (left column). 



The reduced parameter space is ideally suited for pattern 
classification applications. There are, however, still some 
problems concerning the non-linear fit algorithm since in 
some cases the Gaussians shift amongst them, hampering 
the discrimination capabilities of a pattern classification 
system.   
 

ACKNOWLEDGMENTS   

This paper was sponsored by the Portuguese research 
project POSI/EEA-ESE/60397/2004, whose support the 
authors gratefully acknowledge. 

REFERENCES 

[1] V. X. Afonso, W. J. Tompkins, T. Q. Nguyen, and S. Luo, “ECG beat 
detection using filter banks,” IEEE Trans. Biomed. Eng., vol. 46, no. 
2, pp. 192-202, 1999.  

[2] H. Dickhaus and H. Heinrich, “Analysis of ECG late potentials using 
time-frequency methods,” in Time Frequency and Wavelets in 
biomedical signal Processing, M. Akay Ed., IEEE Press, 1998. 

[3] M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, and L. 
Sörnmo, “Clustering ECG complexes using Hermite functions and 
self-organizing maps,” IEEE Trans. Biomed. Eng., vol. 47, no. 7, pp. 
838-848, 2000. 

[4] Jyh-Jong Wei, Chuang-Jan Chang, Nai-Kuan Chou, Gwo-Jen Jan, 
“ECG data compression using truncated singular value 
decomposition," IEEE Trans. on Information Technology in 
Biomedicine, vol.5, no.4, pp.290-299, Dec 2001. 

[5] M. Potter, W. Kinsner, “Competing ICA techniques in biomedical 
signal analysis,” Proceedings of the Canadian Conference on 
Electrical and Computer Engineering, vol. 2, pp.987-992, 2001. 

[6] Barros A, Mansour A, Ohnishi N., “Removing artifacts from ECG 
signals using independent components analysis,” Neurocomputing, 
vol. 22, pp. 173–18, 1998. 

[7] M. Strintzis, X. Magnisalis, G. Stalidis, and N. Maglaveras, “Use of 
neural networks for electrocardiogram (ECG) feature extraction 
recognition and classification,” Neural Network World J., vols. 3–4, 
pp. 313–327, 1992. 

[8] Rangaraj M. Rangayyan, “Biomedical Signal Analysis; A case study 
approach,” IEEE Press, John Wiley & Sons, pp. 137–176, 2002. 

[9] Physikalisch-Technische Bundesanstalt, the National Metrology 
institute of Germany 
http://www.physionet.org/physiobank/database/ptbdb 

[10] MIT-BIH Database Distribution. Physiobank archive index. 
http://www.physionet.org/physiobank/database/#ecg. 

[11] D. C. Rife and G. A. Vincent, “Use of the discrete Fourier transform 
 in the measurement of frequencies and levels of tones,” Bell Syst. 
Tech. J., vol. 49, pp. 197-228, 1970. 

[12] D. Agrez, “Frequency Estimation of the Non-Stationary Signals Using 
Interpolated DFT,” Proceedings of IMTC, vol. 2, pp. 925-930, 2002. 

[13] S. Thurner, M. C. Feuerstein, and M. C. Teich, “Multiresolution 
wavelet analysis of heartbeat intervals discriminates healthy patients 
from those with cardiac pathology,” Phys. Rev. Lett., vol. 80, no. 7, 
pp. 1544-1547, 1998. 

 [14] K. Levenberg, “A method for the solution of certain non-linear 
problems in least squares,” Quarterly of Applied Mathematics, vol. 2, 
pp. 164–168, 1944. 

 
 
 


