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Abstract: The paper presents the problems of modeling and 
measurements in the medical sciences in the context of a 
dynamical system theory. Modeling can be seen here not 
only by the optics of a concrete object – system of breathing 
control, but first of all by the features of the tools used 
during reality reconstruction, which directly transfer to 
measurement procedure. The article is an introduction to a 
given research area.  
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1.   INTRODUCTION 

Thanks to observations, which we make everyday, just 
like thanks to more systematic, scientific observations we 
discover some regularities in the world. The principles of 
science are nothing more than the sentences (opinions) 
which express these regularities so precise, as it is possible. 
Thus, between the observation and the sentence occurs an 
essential interpenetration, on the ground of which, there is 
conditioned an understanding and a prediction of our 
surrounding reality. 

For convenience, the scientific expressions, the same as 
the expressions of our everyday life, can be divided into 
three main groups: classificatory, comparative and 
quantitative, so in fact, into the categories direct 
systematizing the profiles of the conducted measurement 
experiments. Thus, the conclusions expressed in descriptive 
language (logic, mathematics) contain the same, three-
gradual scheme of reality comprehension. The coupling of 
our observations and the expressed contents has to occur in 
clear-cut form, in order that final, practical dimension of 
measurement procedure would bring measurable, utilitarian 
advantages. 

Science starts with a direct observation (measurement) 
of the isolated facts. Nothing more can be observed. 
Regularities are not observable directly, they are discovered 
just when comparing many observations. Such regularities 
are expressed by the sentences called the principles (laws). 
We need to introduce a distinction between the two kinds of 
principles: empirical and theoretical. The first, in obvious 

way, is a direct result of a measurement observation of an 
undertaken system. On the other hand, the theoretical, 
unobservable being, such as elementary particles or 
electromagnetic field, needs to be expressed by the 
theoretical laws. To that, we ought to include a structure of 
descriptive language with its abstractive form and the 
axioms. Closed in this way a cognition scheme admits 
evolution of each of the above-mentioned factors in any 
configuration, and a final benefit connected with its 
application is a fact, that the scientific laws finally give not 
only explanations of the observed facts but also the means to 
predict the new, still unobserved facts. 

Complex bodily rhythms are ubiquitous in living 
organisms. These rhythms arise from stochastic, nonlinear 
biological mechanisms interacting with a fluctuating 
environment. Disease often leads to alterations from normal 
to pathological rhythm. Fundamental questions concerning 
the dynamics of these rhythmic processes abound. For 
example what is the origin of physiological rhythms? How 
the rhythms interact with each other and the external 
environment? Can we decode the fluctuations in 
physiological rhythms to better diagnose human disease? 
And can we develop better methods to control pathological 
rhythms? Mathematical and physical techniques combined 
with physiological and medical studies are addressing these 
questions and are transforming our understanding of the 
rhythms of life. 

 

Very good example of functioning of the foregoing 
systematics is respiratory system, and more precise a 
mechanism of periodical generation of a respiratory signal. 
The paper shows the stages of getting knowledge on this 
object control, pointing, at the same time, at an important 
harmonization and a reciprocal progress within the limits of 
empirical and theoretical statements [1-3]. The virtue of the 
subject is located in still incomprehensible, so that research 
actual the problem of accurate association of the isolated 
facts and laws into a common, coherent theory which would 
explain the dangerous disorders of respiratory pattern. 
Applied by the authors strategy of a knowledge synthesis, 
by a moderately reductionistic modeling and the tools of 
nonlinear dynamics, in the next part of the presentation 
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provides an example (in computer, simulation experiment) 
of possible activity direction, tending towards the practical 
systematization of a partial knowledge. Additionally, the 
clinical conditions suggest a need of knowledge on not only 
an actual state of the system but also a necessity of 
prediction of its future evolution, in what there is located 
efficacy of possible therapies, fixed to getting knowledge. 
Coupling the measurement with the theoretical basics of the 
tools of nonlinear dynamics gives hope on comprehension 
and usage of nature laws as well as further development of 
the methods of their analysis, satisfying the idea: 
measurement – modeling, modeling – measurement. 

2.   PURPOSE 

The aim of the paper is the presentation of abilities to 
analyze the complex system by the theoretical tools of 
nonlinear dynamics, which assume moderate reductionism 
in the structure of reality perception. 

3.   METHODS 

3.1.  Model of the system 

The object of the research is a subsystem of the 
respiratory system, which is responsible for generation and 
control of breathing pattern. The task is interesting in so far, 
as it hasn’t comprehended effectively, so that, there is a 
chance to observe the new diagnostic indexes during the 
measurement experiment, apart from possibility of 
systematizing a knowledge on the tools and their 
applicability. 

 

In the foregoing context, the authors are undertaking an 
attempt at tolerably simple, albeit global description of 
nonlinear dynamics in the medical system of respiratory 
assist. To this end, it was proposed intuitively division the 
system into the three parts: the central respiratory pattern 
generator (CRPG), the passive respiratory mechanics and 
the segment of mechanical support of ventilation (Fig. 1). 

 

Fig. 1.  Scheme of interaction between CRPG, respiratory mechanics 
and mechanical ventilator. 

In a very general sense, breathing in humans relies on 
neural network located in the brainstem and on the 
mechanical respiratory system, both constituting the 

ventilatory system. The oscillatory activity of the central 
respiratory pattern generator induces the rhythmic 
contractions of the respiratory muscles which, in turn, 
periodically inflate the lungs. According to the earlier, 
generalized suggestions, there are the internal conditions 
which can regulate respiratory pattern by each of the 
structures, but the system as an integrity can also react on 
the inputs identified with the external conditions of its work, 
trying to adapt periodical cycles according to requirements 
and possibilities of nonlinear dynamical system, 
simultaneously. More than once, disturbance at one of the 
pointed levels lead to the problems with respiration which 
need an external interference into the respiratory process, 
consisting in an artificial support of ventilation. The disorder 
called sleep apnea syndrome (SAS) is especially dangerous 
for health and life and simultaneously difficult to study [4, 5]. 

 

To imitate the system generalized in Fig. 1, adapting a 
description proposed in [6-8] we prepared the mathematical 
model for each object using a set of differential equations. 

3.2. Patients 

The data of the respiratory volume (Vl) changes were 
collected both in healthy children and small patients 
revealed the symptoms of the respiratory mechanics 
disorders in the tissue region of the system (Fig. 2). The 
signals were then a basis to construction of their time series 
RRV (respiratory rate variability). 
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Fig. 2. Example of measured changes of lung volume in healthy child 
(A) and with the symptoms of respiratory mechanics disorders (B). 

 2



3.3.  Analysis of nonlinear dynamics 

In the paper, we limited ourselves to quantitative 
characterization for the system of the most popular measures 
used to evaluation of system nonlinear dynamics. 

 

The first step was reconstruction of the phase space for 
the time series of the respiratory volume changes: 

 
                  ( ) ( ) ( ) ( )( )[ ]ττ 1   ...      −++= eDtxtxtxtx     (1) 

where De is embedding dimension. 
 

On its basis we can assess a measure of sensitivity of the 
system on the initial conditions, which is characteristic for 
the systems with the chaotic dynamics. In this case it is 
defined so-called maximal Lyapunov exponent λmax, 
representing the rate of solution divergence: 
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where ( ) ( )00 ll xx −= . 
 

The next quantity – capacity dimension DC is determined 
from the minimal number M(l) of regions (D-dimensional 
boxes) of length l that are needed to cover all the points of 
the attractor in the phase space: 
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Equivalent approach consist in consideration DC as a 
slope  against ( )lMln ( )l1ln  (when l→0) in the region in 
which this relationship is linear. 

 

In the case of experimental data or dynamical systems 
with greater number of dimensions it is more precisely to 
calculate dimension other than capacity dimension; there is 
used a measure called correlation dimension DG (5). We can 
calculate it by correlation integral C(l) defined as: 
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where xi, xj are the points at attractor, H – is Heaviside 
function and N is a number of points chosen randomly from 
the hole set of the data. 
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The correlation dimension can be interpreted as a slope of 
linear fitting  against  [9]. ( )lC10log R10log

3.4.  Construction of the RRV time series 

The recorded respiratory signal was processed in Matlab. 
First the linear trend was removed. Then the signal was 
filtered by a FIR passband filter with zero-phase shift. The 
cut-off frequencies were chosen as 0.05 and 1.0 Hz with the 

filter order equal to 100. Respiratory cycle values were 
determined by finding time instants in which the processed 
signal was changing its sign (from negative to positive). A 
vector of these succeeding values constitutes the respiratory 
rate variability (RRV) time series. 

4.   RESULTS 

At the beginning, the model of control breathing was 
tested. It was simulated the conditions of healthy subject as 
well as the vagotomy was imitated. In the normal case, the 
vagus nerves are the anatomical support of afferent 
pathways bringing information on the state of the 
mechanical respiratory system back to the central respiratory 
pattern generator (CRPG). Vagotomy interrupts this loop 
and usually results in a specific change in ventilation: the 
respiratory rhythm decreases while tidal volume increases 
[7]. Reproducing described, experimental tendencies 
computer simulations of our analog confirmed its usefulness 
to the other trials, concentrated on evaluation of the 
properties connected with nonlinear dynamics of the system. 

 

The example prints (Fig. 3 – Fig. 6) depict the selected 
results of the analysis. 
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Fig. 3.  The two- (A) and the three-dimensional (B) phase portrait of a 
chosen, measured RRV. 
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Fig. 6.  Example of maximal Lyapunov exponent calculation. 
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Fig. 4.  Example of DC estimation on the basis of dependence between 

log2M(l) and log2(1/l) (A) and the capacity dimension DC against 
the embedding dimension De (B). 
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Fig. 5.  Example plot of log2C(l) against log2l (A) and dependence of the 

estimated correlation dimension DG on the embedding 
dimension De (B). 

5.   DISCUSSION AND CONCLUSIONS 

The present report isn’t a pure attempt of rigorous, 
systematic solution of the one, concrete problem concerning 
modeling and, in consequence, measurement in medicine. 
However, at its basics there is desire to pay attention to the 
essence of the methodological proceedings during the 
process of surrounding reality comprehension. Modeling can 
be seen here not only by the optics of a concrete object, but 
first of all by the features of the tools used during reality 
reconstruc
pro ol. toc

 

The investigation of the origin and dynamics of the 
rhythmic processes – once the sole province of physicians 
and experimental physiologists – is coming under 
increasingly close examination by mathematicians and 
physicist. Mathematical analyses of physiological rhythms 
show that nonlinear equations are necessary to describe 
physiological systems [10-11]. In contrast to the linear 
equations of traditional mathematical physics (for example, 
Maxwell’s equations, the heat equation, the wave equation 
or Schrödinger’s equation), nonlinear equations rarely admit 
an anlytical solution. Numerical simulations are one 
essential feature of quantitative studies of physiological 
systems. A complementary approach is to analyse 
qualitative aspects of simplified mathematical models of 
physiological systems. This involves a mathematical 
analysis of those features of physiological systems that will 
be preserved by classes of 

A) 

B) 

 
The technical aspect of the work can be associated with a 

simple attempt of application of the nonlinear dynamics 
theory in the case of the respiratory system. The reported 
results were generated both by computer sim

in
 

We estimated the basic measures, typical for the 
questions of nonlinear dynamics. They gave us the 
evidences of existence of chaotic properties in the 
respiratory signal, probably due to chaotic dynamics of the 
central pattern generator. It is difficult to link the presented 
results to any reported observations in this area, because of 
their poor resources. Nevertheless, the found trends and 
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regularities can be the introductory indicators during more 
fundamental research, especially in the question of sleep 
apnea syndrome. Very helpful can be here exploitation of 
the other signals, e.g. oxygen saturation, etc. The other 
profit of our investigations is the statement, that in the future 
we need to use longer sequences of RRV time series to our 
analysis, to avoid the ambiguities during estimations of the 
defined measures.  

 

Biological signals, thus respiratory ones, in addition to 
being nonlinear, also exhibit important features connected to 
non-stationarity, noise and high dimensionality [12-14]. 
Consequently, there are cases in which low dimensional 
chaos analysis becomes unable explain the investigated 
phenomena. Wavelets, surrogate testing and other so-called 
nonlinear methods result strongly inadequate since they are 
still based on linear systems theory and require stationarity. 
The contributions of Eckmann and Ruelle were extremely 
clear to this regard [15]. As reported Bruce [16], a record of 
respiratory activity may include breath-to-breath variability 
of several types: random uncorrelated, random correlated, 
periodic, and nonlinear deterministic. Under such 
circumstances, very perspective can be applying the more 
sophisticated tools of nonlinear dynamics in the future, for 
example the recurrence quantification analysis with its 
recurrent plots [17] characterizing the signal in more 
topological way.  

 

These initial studies indicate the rich dynamics of the 
respiratory signal, and in the future we need to look for 
differences between normal individuals and patients. The 
issue of whether or not the dynamics reflect chaos is much 
less interesting than elucidating the underlying mechanisms 
controlling the dynamics. These mechanisms are a reflection 
of structural and interaction complexity, hence it seems 
unlikely that the information can be ‘decoded’ simply by 
observing spontaneous behaviour.  

 

The future efforts should be devoted to develop better 
diagnostic and prognostic methods by analysis of dynamics 
of physiological rhythms. Very important issue is also the 
fact, that the empirical methods used to develop and test 
medical devices have not included a detailed mathematical 
analysis of interactions of the physiological rhythm with the 
device, what in the case of the respiratory system can be 
invaluable significant [18].  
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