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Abstract: Practical use of Machine Vision for surface 
roughness estimation faces many challenges, as in this case 
only image is used for evaluation and not the component. In 
such cases, if the component is kept at an angle during 
imaging, there is a possibility of getting distorted information 
and therefore the consistency of evaluation/ quantification 
would become a problem. So, there is a need to ensure that the 
measured surface is kept horizontal and flat when the image is 
being taken. In this work, estimation of the surface roughness 
has been done and analysed using digital images of machined 
surfaces obtained by a Machine Vision system deliberately 
maintained at varying angles. The quantitative measures of 
surface roughness are extracted in the spatial frequency 
domain using a two dimensional Fourier Transform. An 
artificial neural network (ANN) is trained and tested to arrive 
at the Ra values using the input obtained from the digital 
images of inclined surfaces which include optical roughness 
parameters estimated and angular of inclination of test parts. 
The estimated optical roughness parameter results based on 
the images of the surfaces are compared with the surfaces that 
are kept horizontal and the results are presented and analysed 
in this paper. In addition optimal combination of calculated 
roughness parameters which act as input to the ANN in order 
to obtain best correlation between estimated Ra using ANN 
and stylus measured Ra value is determined.  
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1.    INTRODUCTION 

The quality of components produced is of main concern to 
the manufacturing industry, which normally refers to 
dimensional accuracy, form and surface finish. Therefore, the 
inspection of surface roughness of the work piece is very 
important to assess the quality of a component, which is 
normally performed using stylus type devices, which correlate 
the vertical displacement of a diamond – tipped stylus to the 
roughness of the surface under investigation. This process is 
accurate, accepted widely by all the users. But, this method is 
not suitable for high volume applications as it is time 
consuming and cumbersome. Another disadvantage of this 
stylus method is that it requires direct physical contact with 
the component and the resolution of this instrument depends 
mainly on the diameter of the measuring probe tip. 

With growing demand of industrial automation in 
manufacturing, machine vision plays an important role in 
quality inspection and process monitoring. Machine vision for 
industry has generated a great deal of interest in the technical 
community over the past several years. Extensive research has 
been performed on machine vision applications in 
manufacturing, because it has the advantage of being non-
contact and as well faster than the contact methods. Using 
Machine Vision, it is possible to evaluate and analyse the area 
of the surface, which makes it a 3D evaluation [1, 2, 3]. 
Machine vision is many times considered as a subset of 
artificial intelligence. Machine vision typically employs a 
camera, a frame grabber, a digitiser and a processor for 
inspection tasks where precision, repetition (particularly for 
mass produced components) and/or high speed are needed. 

Over the years, the non-contact optical methods have 
attracted researchers’ attention for the assessment of surface 
roughness. Most of the methods are based on statistical 
analysis of grey-level images in the spatial domain. The 
intensity histograms of the surface images have been utilized 
to characterize surface roughness and quality. Statistical 
methods such as co-occurrence matrix approach, the amplitude 
varying rate statistical approach and run length matrix 
approach have also been used to compare the texture features 
of machined surfaces [4]. Hoy and Yu proposed the two-
dimensional Fast Fourier Transform of the digitised surface 
image in which the magnitude and frequency information 
obtained from the FFT are used as measurement parameters of 
the surface finish [5]. 

All these methods use the basic assumption that the surface 
of the specimen is completely flat and there is no inclination 
when the images are captured. Even a small inclination of the 
specimen may result in inconsistent estimation of roughness of 
components using machine vision primarily due to the fact 
that illumination, shadow on the images is likely to be 
different. 

In this work, the machined surfaces are deliberately kept 
inclined at various angles to the horizontal and their images 
were captured using a Machine vision system. Then the 
surface roughness parameters in the spatial frequency domain 
are estimated and are then used as input to the ANN. The 
output of the ANN i.e. calculated Ra varies with the number of 
input and the surface roughness parameters. Hence, selection 
of optimum combination of input data is of practical 
importance while estimating surface roughness using ANN.  
 



2.    EXPERIMENTAL PROCEDURE 

The schematic diagram of the Machine vision system is 
shown in Fig. 1. The basic experimental set-up consists of a 
vision system (CCD camera: Pulnix -TM6, 768 x 565 pixels, 
with Image, LC processing hardware with 4 frame buffers and 
1/30 s grabbing speed) and an appropriate lighting 
arrangement. Illumination of the specimens was accomplished 
using a diffused white light source, which is kept at an angle 
of approximately 45° incidence with respect to the specimen 
surface as shown in Fig. 1.  

The experiments were carried out using flat mild steel 
specimens manufactured by grinding process. Surfaces with 
varying roughness / textures were obtained by controlling the 
machining parameters. The specimens were first placed on a 
flat surface and the images were taken. Images of the surface 
were then taken at varying angles (0°-12°) so as to analyse the 
surface roughness parameters estimated for small changes in 
angles that may inadvertently occur during normal use of the 
machine vision approach. Surface images were grabbed by the 
CCD camera and were pre-processed to eliminate illumination 
and noise effects.  

 

 
Fig.1. Schematic diagram of the Machine Vision system. 

3.    ESTIMATION OF SURFACE ROUGHNESS 
PARAMETERS 

The most important requirement in roughness assessment 
using machine vision is to extract the roughness parameters of 
surfaces using images. In this work, surface roughness 
parameters are extracted based on spatial frequency domain 
using the 2D Fourier transform. The Fourier transform 
characterises the surface images in terms of frequency 
components [6].   

This work is confined to roughness assessment of ground 
surfaces inclined at varying angle to the horizontal plane.  Liu 
and Jernigan have derived a set of 28 texture features in the 
spatial frequency domain [7].  In this study, five roughness 
features were chosen from them and are used. They are given 
below.  
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be the normalized power spectrum, which has the 
characteristics of a probability distribution. Where P (u,v) is 
the power spectrum of the image I(x,y). 

3.1. Major Peak Frequency F1  
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Where (u1, v1) are the frequency coordinates of the maximum 
peak of the power spectrum i.e, 
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Feature F1 is the distance of the major peak (u1, v1) from the 
origin (0, 0) in the frequency plane. 

3.2. Principal component Magnitude Squared, F2 
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Where �1 is the maximum Eigen value of the covariance 
matrix of p(u,v). The covariance matrix M is given by 
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Feature F2 indicates the variance of components along the 
principal axis in the frequency plane. 

3.3. Average power spectrum F3 
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 Where S=N2-1 for a surface image of size N × N 
 
 
 
 
 



3.4. Central Power Spectrum Percentage, F4 
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The frequency component at the origin (the centre) of the 
frequency plane has the maximum power spectrum. 

3.5. Ratio of Major Axis to Minor Axis F5 
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Where �1 and �2 are the maximum and minimum eigen values 
of the covariance matrix of P(u,v). 

4.    NEURAL NETWORKS FOR SURFACE 
ROUGHNESS ASSESSMENT  

After estimating the roughness features F1, F2, F3, F4 and 
F5 using the images, an attempt is made in this work by using 
them as input to predict the roughness value Ra using 
Artificial Neural Networks (ANN). ANNs are computing 
systems made up of a number of simple, highly interconnected 
processing elements called neurons, which processes 
information by their dynamic state response to external inputs. 
A neuron is a simple processor, which takes one or more 
inputs and produces an output. Each input into the neuron has 
an associated weight that determines the ‘‘intensity’’ of the 
input. The processes that a neuron performs are: multiplication 
of each of the inputs by its respective weight, adding up the 
resulting numbers for all the inputs and determination of the 
output according to the result of this summation and an 
activation function. While a single neuron is of very limited 
use, a number of connected neurons, i.e. a network, can be 
trained to perform certain tasks. Data is fed into the network 
through an input layer, it is processed through one or more 
intermediate hidden layers and finally it is fed out of the 
network through an output layer, Fig. 2 [8]. 

The training process involves presenting a set of input 
patterns with known outputs to the ANN. The system adjusts 
the weights of the internal connections to minimise errors 
between the network output and target output. After the ANN 
is satisfactorily trained, it will be able to respond to unseen 
input data to predict required output, within the domain 
covered by the training examples [9].  

Back-propagation neural network used for estimating the 
surface roughness of the machined surfaces with varying 
angles of inclination. The input to the network is a subset of 
calculated roughness parameters and angle of inclination. The 
structure of an ANN is shown in Fig. 2. In the training phase, 
the desired value of the node in the output layer is the actual 
roughness value Ra calculated by stylus method. In the testing 
phase of the neural network, the estimated roughness, Ra is 
given by the value of the node in the output layer. 
 

 
Fig.2. Typical Artificial Neural Network 

 

5.    EXPERIMENTAL RESULTS 

In this section experimental results are presented for 
evaluating the validity of the proposed quantification of 
optical roughness parameters and the performance of the 
neural networks for roughness assessment for different 
combination of roughness parameters. Roughness parameters 
F1, F2, F3, F4 and F5 are calculated for test specimens 
deliberately kept at different angles of inclination �. It is 
observed that the values of roughness parameters calculated 
based on such inclined images vary with the angle of 
inclination of the surfaces. 

Roughness parameters are then calculated for 9 test 
specimens at different angle of inclination (0°-12°). The input 
and output data are separated into training and testing sets. 
ANN are however, only able to process the data in a certain 
format. Therefore normalization of data is done before 
presenting the training patterns to the network. Normalization 
function is represented by the following relationship: 
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C is a constant, usually between -0.25 and 0.25 to ensure that 
the values are in the range of 0.2 to 0.8. ‘n’ is the number of 
digits in the integer part of the variable V [9]. 

With nine test samples and twelve varying angles of 
inclinations, 117 combinations are possible and all of them 
have been used for estimation. Out of 117 images 94 are used 
for training the ANN and remaining 23 are used for testing the 
ANN. The selection of testing and training data is based on the 
work done by earlier researchers [9]. 

The optimal subset of the roughness parameters for ANN 
is then determined by evaluating all possible combination of 
roughness parameters. The best combination of roughness 
parameters is determined based on minimum R.M.S roughness 
error, which is calculated using the following equation. 
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Where Rj
* is the actual roughness value or stylus Ra value 

and Rj is the estimated roughness value from the ANN for the 
jth sample in the test set. N is the total number of samples in 
the test set. 

The calculated roughness parameters (F1, F2, F3, F4 and F5) 
and angle of inclination of the component (�) are used as input 
to the ANN. The ANN is tested by varying the number and 
combinations of inputs as shown in table 1, 2 and 3. When two 
roughness parameters and angle of inclination are used as 
input to the ANN, the combination of F1 and F4 yields 
minimum R.M.S roughness error of 0.048 and maximum 

correlation of 84.7% between stylus Ra and ANN Ra. For three 
selected parameters, combination of F1, F3 and F4 yields 
minimum R.M.S roughness error. In case of four parameters, 
R.M.S roughness error is least when F1, F2, F3 and F4 are given 
as input to the ANN. The over all minimum R.M.S roughness 
error of 0.041 is obtained by the combination of all the five 
roughness parameters, F1, F2, F3, F4 and F5. It is also seen from 
table 3 that absence of F1, ie, major peak frequency results in 
considerable increase in the R.M.S. roughness error. Therefore 
major peak frequency, F1 is a very effective and reliable 
feature for estimating the roughness value.  

 
 

Table 1. R.M.S roughness error and percentage correlation of calculated Ra and Stylus Ra                                                                                                          

for the possible combination of two roughness parameters 
 

Possible Combinations of 
inputs 

R.M.S Roughness 
error 

Percentage Correlation between 
stylus Ra and ANN Ra (%) 

F1, F2, � 0.07032 74.7 
F1, F3, � 0.07028 67.0 
F1, F4, � 0.04804 84.7 
F1, F5, � 0.08101 74.6 
F2, F3, � 0.05663 84.7 
F2, F5, � 0.05692 82.5 
F3, F4, � 0.06835 72.8 
F3, F4, � 0.01151 23.9 
F3, F5, � 0.09326 34.0 
F4, F5, � 0.08514 30.8 

 

Table 2. R.M.S roughness error and percentage correlation of calculated Ra and stylus Ra                                                                                                          

for the possible combination of three roughness parameters 

 

Possible Combinations of 
inputs 

R.M.S Roughness 
error 

Percentage Correlation between 
stylus Ra and ANN Ra (%) 

F1, F2, F3, � 0.05069 80.8 
F1, F3, F4, � 0.04818 84.5 
F1, F3, F5, � 0.07939 56.9 
F1, F2, F4, � 0.05794 81.4 
F1, F2, F5, � 0.05806 77.7 
F1, F4, F5, � 0.05931 84.5 
F1, F4, F5, � 0.04667 83.8 
F2, F3, F4, � 0.05907 78.6 
F3, F4, F5, � 0.10787 31.1 
F2, F3, F5, � 0.05553 82.3 

 
 
 



 

Table 3. R.M.S roughness error and percentage correlation of calculated Ra and stylus Ra                                                                                                                 

for the possible combination of four roughness parameters 

 
Possible Combinations of 

four parameters 
R.M.S Roughness 

error 
Percentage Correlation between 

stylus Ra and ANN Ra (%) 
F1, F2, F3, F4, � 0.04602 84.3 
F1, F3, F4, F5, � 0.05296 81.5 
F1, F2, F4, F5, � 0.05798 77.4 
F1, F2, F3, F5, � 0.04888 83.5 
F2, F3, F4, F5, � 0.07109 55.3 

 
 

   

     
(a)              (b) 

 

    
(b)             (d) 

 
Fig. 3. Graphs showing Ra ANN vs. Ra stylus at various angle of inclination, for different combination of roughness parameters. 
(a) for input combination F1, F4, �; (b) for input combination F1, F3, F4, �; (c) for input combination F1, F2, F3, F4, �; (d) for input 
combination F1, F2, F3, F4, F5, �. 
 
 
 
 



 
It is also observed that the combination of F1 and F4 results 

in better correlation between stylus Ra and ANN Ra and least 
R.M.S roughness error. Overall maximum R.M.S roughness 
error of 0.107 is obtained by the input combination of F3, F4, 
F5 and �. For two selected roughness parameters, combination 
of F3 and F5 results in higher R.M.S roughness error (table 1). 
Thus, the presence of roughness parameter, F5 increases the 
R.M.S roughness error and results in poor correlation between 
calculated and measured roughness value. Hence, the selection 
of appropriate combination of input data affects the desired 
output to a large extent.  

7.    CONCLUSION 

In this work a non-contact machine vision approach is used 
for estimating the optical roughness of ground surfaces by 
keeping them inclined at varying angles to the horizontal. An 
ANN has been used for predicting the roughness values of the 
components using the optical roughness parameters obtained 
from the Fourier transform of the image as input. The ANN is 
tested with all the possible combinations of roughness 
parameters by varying the number of inputs and the optimum 
combination for the surface parameter estimation is arrived at. 
The predicted roughness values using ANN are found to be 
correlating well with the conventional stylus Ra values even 
when the test specimen images are taken at varying angles. 
The proposed methodology can be applied to the machined 
parts in a manufacturing environment where it is difficult to 
ensure absolute flatness during imaging of the surfaces to be 
tested. Therefore the machine vision and ANN approaches 
could very well be used for estimation and prediction of 
roughness of components respectively. 
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