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Abstract − Metrology practice confirms that very often by 
carrying out the corrections the result of measurement may 
contain greater error (deviation) than in the case of no 
corrections at all. Therefore, it is often assumed that the 
value of correction is zero, with assumed influences on the 
uncertainty of correction included in the uncertainty of the 
measuring results. In the field of length metrology the 
correction cannot be avoided in case of temperature 
influences or actions of the measuring force during the 
measurement procedure. Numerous experiences show that 
temperature correction is a questionable procedure due to a 
whole number of unknowns, and in case of more demanding 
measurements and the related more demanding uncertainties 
of measurement, one resorts to achieving of standard 
temperature conditions. However, the measurement results 
have to be corrected in case of the action of the 
measurement force, especially because the value of 
correction often exceeds the value of uncertainty of 
measurement. An example of measuring the sphere 
diameter, described in this work, fully supports the 
mentioned claim. 
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1.  INTRODUCTION 

In case of applying the measurement procedure in which the 
object of measurement is subjected to a certain measuring 
force, it is impossible to avoid the correction of 
measurement results because of elastic deformations since 

the value of correction often exceeds the amount of the 
uncertainty of measurement of the measurement results.  

In case of insufficient laboratory experiences and the related 
“fixed” items for reliable performance of correction, there is 
always certain doubt whether the correction has been 
performed properly and whether the uncertainty of 
correction has been “properly measured”. Comparison 
measurement can give efficient answer to this question. This 
paper presents a case in which the correction value exceeds 
the amount of measurement uncertainty due to the action of 
the measuring force. Further in the text, more detailed 
explanations are given regarding the calculation of 
correction and measurement uncertainty for a Rubin sphere 
of 1 mm diameter. 
 
2. RESULTS OF SPHERE MEASUREMENT 

Table 1 shows the results of comparison measurements of 
Rubin spheres of diameters 1 mm, 3 mm, 4 mm and 5 mm 
of the LABCOM group from 2004 and 2005. It should be 
noted that in 2005 the certificates of calibration indicated 
apart from the result the values of correction as well. The 
LABCOM (Laboratory Cooperation in Measurements) 
Group is an informal group of laboratories organized with 
the aim of cooperation in carrying out the comparison 
measurements (once a year) and experience exchange in 
calibration procedures. The group consists of 8 accredited 
laboratories from five European countries. The work of the 
Group includes also the Laboratory for Precise 
Measurement of Length (LFSB), where the authors are 
employed 

 
   Table 1. Measurement results for diameters of sphere from 2004 and 2005 

 
2004. 2005. No. Laboratory 

d, mm U, µm d, mm U, µm d, mm U, µm d, mm U, µm 
1 A 0,99960 0,25 3,00050 0,25 3,99990 0,25 5,00010 0,25 
2 B 1,00000 0,50 3,00040 0,50 3,99960 0,50 5,00090 0,50 
3 LFSB 1,00100 0,40 3,00049 0,60 3,99977 0,60 5,00098 0,60 
4 C 0,99940 0,70 3,00050 0,50 3,00000 0,50 5,00090 0,50 
5 D 0,99980 0,20 3,00030 0,20 3,99970 0,20 5,00090 0,20 
6 E - - 3,00061 0,16 3,99991 0,16 5,00115 0,16 
7 F - - 2,99950 0,80 3,99900 0,80 5,00030 0,80 
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Figure 1: Graphical presentation of measurement results for 1 mm 

sphere from 2004 
 
Table 1, i.e. the graphical presentation in Figure 1 (results 
of measuring 1mm spheres from 2004), shows that the 
result of LFSB has shifted to a positive regarding other 
four laboratories.  
Strictly taken, this could be interpreted 

2,998

2,999

3

3,001

3,002

A B LFSB C D E F

Laboratory

D
ia

m
et

er
, m

m

 
Figure 2: Graphical presentation of the measurement results for 3 
mm sphere from 2005. 
 
by the fact that LFSB has carried out the correction due to 
the action of the measuring force, whereas other 
laboratories did not do it (positive shift of LFSB results). 
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Figure 3: Graphical presentation of the measurement results for 4 
mm sphere from 2005. 
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Figure 4: Graphical presentation of the measurement results for 5 
mm sphere from 2005 

Figures 2, 3 and 4, which present the results for the 
spheres of diameters 3 mm, 4 mm and 5 mm from 2005 
show that all the results are at a uniform level as different 
from the results in 2004. This could be interpreted if all 
the laboratories had carried out the correction procedure 
due to the influence of the measuring force. The exception 
is the result of the laboratory F which did not participate 
in the 2004 comparison. 
 
3. CALCULATION OF UNCERTAINTY OF 
MEASUREMENT 

The uncertainty of measurement was calculated by Monte 
Carlo method (MCS) with M = 100000 simulations. The 
basic characteristics of the MCS method can be listed as 
follows: 

- input values defined by various functions of 
probability density (pdf); 

- probability density functions of input values are 
combined and form the experimental pdf 
measured (output) values; 

- the estimate of the output value, and the interval 
for a certain probability P are estimated from the 
experimental pdf output values. 

Mathematical measurement model: 
                                              

AETixixx dddddd δ+δ+δ+δ+=          (1)                     
 

xd  
- Actual sphere diameter at 20 oC 

ixd  
- Measured sphere diameter 

ixdδ  - Correction for the error of indication of the 
measuring device 

Tdδ  
- Correction due to temperature effects 

Edδ  - Correction due to elastic deformation 

Adδ  - Correction due to Abbe error 

 

Uncertainty of repeatability of measuring the sphere 
diameter  )( ixdu
The estimate of uncertainty of repeatability of measuring 
the sphere diameter contains the influence of the sphere 
geometry (deviation from the shape), as well as the 
influence of repeatability of the measuring device, and 
uncertainty of determining the reference value on the 
measuring device. It has been found that the standard 
uncertainty of the repeatability of measuring the sphere 
diameter amounts to:  = 0,15 µm. )( ixdu

 



Uncertainty of correction due to error of measuring device 
reading  )( ixdu δ
The uncertainty of correction due to the error of the 
measuring device reading )( ixdu δ  results from the 
manufacturer's specifications and amounts to: 
      µm, d u m                 (2) )135,0()( ddU ix ⋅+=δ
 
Assuming the rectangular distribution the standard 
uncertainty of correction due to the error of the measuring 
device reading amounts to: 
 
       µm, d u m               (3) )58,020,0()( ddu ix ⋅+=δ

Uncertainty of temperature correction u  )( Tdδ
The uncertainty assigned to temperature correction 
(expression 4) consists of the uncertainty of measurement 
of sphere temperature and the measuring scale 
temperature )( tu δ  and the uncertainty of knowing the 
amounts of the coefficients of temperature expansion 

)(αu . 

tddT δ⋅α⋅=δ                                      (4)                      
where: 

d  - Nominal sphere diameter 
α  - Average linear coefficient of temperature  

        expansion of the sphere and measuring scale 

tδ  - Average temperature deviation of the sphere 
       and measuring scale from 20oC 

 
Standard uncertainty was determined in the amount of 

µm,  u m ddu T ⋅=δ 1)( d

Uncertainty of correction due to elastic deformations 
 )( Edu δ

During the procedure of measuring the sphere diameter, 
there is contact between two flat surfaces and the sphere. 
In the measuring system the probes with flat carbide 
surfaces are used, whereas the sphere is made of Rubin. 
The known Hertz formulae yield the amount of 
deformation for the realized contact according to the 
following expression: 
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where: 

1E – Young′s modulus for stylus tip material , N/m2 

2E – Young′s modulus for sphere material, N/m2 
 r  –   sphere radius, m 
F  –  measuring force, N  

1μ – Poisson′s ratio for stylus tip material  

2μ – Poisson′s ratio for sphere material   
The values of the Poisson's coefficient and Young's 
modulus depend on the composition of the material, and 
on the specific process of material hardening. According 
to the literature data, it may be assumed that the 
uncertainty of the mentioned constants amounts to about 
3%. 
The input values xi for the sphere of diameter 1mm are 
defined in the probability density functions g(xi) as 
presented in Table 2. The probability density function of 
the output value Edδ  has been simulated by the MCS 
method with M = 100000 simulations. 
 
Table 2: Input values and probability density functions in simulation 

of value Edδ  for sphere of 1mm diameter 

Input value xi Probability density function g(xi) 

Measuring force F Normal distribution  
   (M; 2,33 N; 0,001 N) 

Sphere radius r 0,5 mm 

Young′s modulus for 
stylus tip material E1

Rectangular distribution 
 (M; 5,335⋅1011 N/m2 ; 
5,665⋅1011 N/m2) 

Young′s modulus for 
sphere material E2

Rectangular distribution 
 (M; 4,171⋅1011 N/m2; 
4,429⋅1011 N/m2) 

Poisson′s ratio for stylus 
tip material 1μ  

Rectangular distribution 
 (M; 0,2231; 0,2369) 

Poisson′s ratio for 
sphere material 2μ  

Rectangular distribution 
 (M; 0,2813; 0,2970) 

 
For the sphere of nominal diameter 1mm the correction 
due to elastic deformation amounts to 0,90 µm, and the 
estimated standard deviation 0,008 µm. The output value 

Edδ  is within the interval: 

[( Edδ )0,025 = 0,885 µm; ( E )dδ 0,975  = 0,913 µm] with P 
= 95%. 

Uncertainty of correction due to Abbe error u )( Adδ  

In the set measuring system the correction value of Abbe 
error equals zero, Adδ = 0, whereas the uncertainty of 

Abbe error u( Adδ ) is not zero. Based on the testing of the 
device and experience of the laboratory, Abbe error in the 
amount of ±0,05 µm is estimated. 
The uncertainty )( Adu δ  assuming rectangular 

distribution of probability, thus, amounts to: 

028,0)( =δ Adu µm. 

 
Probability density function of output value  x

The probability density function of the output value d
d

x has 
been simulated by MCS method with M = 100000 
simulations. The input values xi for the sphere of nominal 
diameter of 1mm are defined by the probability density 
functions g(xi) as presented in Table 3.  



 
Table 3. Input values and pdf in simulating the value dx for 1 mm 
sphere 
 

Input value xi Probability density function g(xi) 
Measured sphere 
diameter dix

Normal distribution   
(M; 1,000 mm; 0,15 µm) 

Correction for the error 
of indication of the 
measuring device 

δdix
/Rectangular distribution 
 (M; -0,20 µm; 0,20 µm) 

Temperature correction δdT
Normal distribution 
 (M; 0 µm; 0,001 µm) 

Elastic deformation 
correction δdE

Triangular distribution 
 (M; 0,885 µm; 0,913 µm) 

Abbe error correction δdA
Rectangular distribution 
 (M;-0,05 µm; 0,05 µm ) 

 
Probability density function g(dx) for sphere of nominal 
diameter 1 mm is shown in Figure 5. 
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Figure 5. Probability density function g(dx) for 1 mm sphere  

 
The estimated standard deviation of the output value g(dx) 
for the sphere of nominal diameter 1mm amounts to 0,191 
µm. The output value dx is within the interval: 
 
[(dx)0,025 = 1,00053 mm; (dx)0,975 = 1,00127 mm] with P = 

95% 
 
Table 4 shows the summarized overview of the 
uncertainty elements, correction values and the respective 
standard uncertainties, and the value of the expanded 
uncertainty of measurement in measuring the diameter of 
a Rubin sphere of 1mm. 
 
Table 4: Uncertainty budget for 1mm sphere 
 

Input value xi
Type of 
uncert. 

 
Correc, 

µm 

)( ixu  

µm 

Measured sphere diameter ixd  A 0 0,15 

Correction for the error of 
indication of the 
measuring device 

ixdδ  B 0 0,20 

Temperature correction Tdδ  B 0 0,001 

Elastic deformation 
correction Edδ  B 0,9 0,014 

Abbe error correction Adδ  B 0 0,03 

Expanded uncertainty U = 0,40 µm; k=2 ; P= 95% 

 
It may be noted that the value of correction due to elastic 
deformation ( Edδ = 0,9 µm) is greater than the total 
uncertainty of measurement (U = 0,4 µm), and that in no 
way can the correction be "hidden" within the uncertainty 
of measurement.  
 
4. CALCULATION OF CORRECTIONS DUE TO 
ELASTIC DEFORMATIONS 

The amounts of corrections and the respective 
uncertainties for the measuring force F = 2,33 N, which 
have been implemented in the concrete cases by LFSB for 
Rubin and carbide, are presented in Table 5. 

 
Table 5: Correction value (F=2,33 N) 
 

 Material: Rubin Material: Carbide 
Sphere 

diameter 
mm 

Correct. 
µm 

Correct. 
Uncertain, 

µm 
Correct. 

µm 

Correct. 
Uncertain., 

µm 

0,1 1,94 0,030 1,8 0,028 
0,2 1,54 0,024 1,43 0,022 
0,3 1,34 0,021 1,25 0,019 
0,4 1,22 0,019 1,13 0,018 
0,5 1,13 0,018 1,05 0,016 
1 0,90 0,014 0,83 0,013 
3 0,62 0,010 0,58 0,009 
4 0,57 0,009 0,53 0,008 
5 0,53 0,008 0,49 0,008 

10 0,42 0,007 0,39 0,007 
 
It should be noted that the uncertainties of corrections, 
which are components of the total uncertainty of 
measurement, are substantially smaller than the 
corrections themselves. The problem may arise in 
measuring (performing correction) of the small diameter 
beads (up to 1mm). 
 
This is presented in diagram in Figure 6 where there is 
high curve gradient (correction) for the force F = 2,33 N 
for the sphere diameters smaller than 1mm.  
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Figure 6: Graphical presentation of the amount of correction for 

 much better situation (more reliable correction) is in 

different sphere diameters  
 
A
case of applying smaller measuring force (F = 0,2 N). The 
uncertainty of correction, namely, in the area of sphere 
diameter of up to 1mm with F = 2,33 N significantly 



depends on knowing the value of the Poisson's coefficient 
and the module of elasticity. Reliable knowing of the 
values of the mentioned constants in the range of ± 3% 
from the nominal value has no major influence on the 
uncertainty of correction, which cannot be stated if the 
values of constants are in the range of ± 20% of the 
nominal value. (Figure 7.) 
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igure 7: Graphical presentation of the amounts of uncertainty of 
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only theoretically the issues related to 
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performed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

O
comparison with the others, can one gain confidence in 
the mathematical procedures and literature claims of 
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