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Abstract: In the paper “A new approach to the examination 
of the displacement sensor characteristics” published in 
Measurement, vol. 28, pp. 261-267”, śebrowska-Łucyk 
proposes a new, interesting method for measuring the char-
acteristics of displacement sensors. The method consist in 
exciting the sensor tip with a sinusoidal signal having a 
known amplitude. In this paper, the authors modify the 
method so that it is possible: (1) to conduct measurements 
by means of a typical sensor tip with a circular cross-
section, (2) to eliminate the necessity of possessing an addi-
tional measuring eccentricity standard, (3) to determine the 
sensor characteristics on the basis of non-closed roundness 
profiles.  
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1.   INTRODUCTION 

Measurements of roundness or cylindricity are generally 
preceded by centering and leveling of an object on the 
measuring table. It is necessary to make the object axis 
coincide with the table axis of rotation (for devices with a 
rotary table) or with the sensor axis of rotation (for devices 
with a rotary sensor). In this way, measurements can be 
performed in small measuring ranges and with a higher 
accuracy. Also, it enables to eliminate the geometrical 
nonlinearities resulting from the object eccentricity [2] and 
the nonlinearities of the measuring sensor characteristic. 

The centering and leveling operations are time-
consuming and performed in stages. They require good 
manual skills of an operator, as well. They are particularly  
troublesome if we are to assess cylindricity or roundness of 
a non-closed profile as a circle sector [3], for instance, the 
cross-sections of rolling bearing races. As a result of the 
development of electronics, it is possible to apply measuring 
systems with high resolution. Digital methods of signal 
processing help to eliminate the geometrical nonlinearities. 
Thus, the centering and leveling of a workpiece could not be 
necessary if the characteristic of the measuring sensor is 
known. 

The knowledge of sensor characteristics can also be util-
ised in measurements of the surface of rotary objects with 
varied diameters, e.g. cones, barrels, as well as in compara-

tive measurements of object dimensions, e.g. radii, [3]. 
Moreover, by applying an electronic system of signal shifts, 
we are able to perform accurate measurements at various 
points of the sensor characteristic, rather than in the vicinity 
of a point where the sensor is calibrated. 

The new method for measuring the characteristics of a 
displacement sensor proposed in Ref. [1] involves exciting 
the sensor tip with a sinusoidal signal with a known ampli-
tude. It is essential to determine the relationships between 
the coefficients of the sensor characteristic and the coeffi-
cients of the trigonometric Fourier series of a measured 
signal. The method requires applying a special standard 
consisting of two cylindrical  discs arranged eccentrically. 
Moreover, it is necessary to use a sensor tip with a rectangu-
lar cross-section to cause exact sinusoidal excitation. 

This work proposes a few modifications to the above 
method so that it can be used with instruments for measur-
ing roundness and cylindricity. The method should also be 
adequate for measurements of non-closed profiles without 
applying extra standards or tips. The modifications allow 
employing a tip with a circular cross-section and determin-
ing the sensor characteristic on the basis of a profile being 
the circle sector. As the procedures of the sensor characteris-
tic determination and the sensor calibration are separated, an 
ordinary roundness standard or any cylindrically shaped 
object with a slight roundness deviation can be used to ana-
lyze the sensor deflections. 

2.    MODELS  OF  SENSORS  EMPLOYED  IN  IN-
STRUMENTS FOR ROUNDNESS MEASUREMENTS 

Let wR  denote an indication of a measuring sensor. In 

an ideal case, when the sensor characteristic is linear, the 
sensor indications are in proportion to the changes in the 
object radius mR , thus  

 wm kRR = . 

In the above equation, the coefficient k  is the calibration 
coefficient, which is determined during the sensor calibra-
tion by using standards with known values of deviations, the 
standards being regular equipment of the measuring device. 
We employ chamfered standards, standards with an oval 



cross-section, roughness standards with a known value of 
the coefficient Ra, and grooved standards where the groove 
depth is known. The sensors can also be calibrated applying 
gauge blocks. In practice, the sensor characteristic is nonlin-
ear. It is best to approximate it by means of the polynomial: 
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The number n  will be called the order of approximation. 
The objective is to establish the coefficients 1a , 2a ,..., 1−na  

of polynomial (1). Assume that the sensor characteristic 
determination and the sensor calibration are performed in-
dependently of each other. Thus, for further considerations, 
we can assume that the calibration coefficient is a known 
quantity. For the sake of simplicity, it is assumed to be equal 
to one: 

 1=k . (2) 

According to [1], the coefficients of the sensor characteris-
tics are established by measuring an object with a small 
roundness deviation placed eccentrically in relation to the 
axis of rotation. Assume that the value of eccentricity is 
selected in such a way that the sensor tip displacement dur-
ing a measurement comprises the entire measurement range. 
A displacement of the sensor tip during a measurement 
depends on the angle ϕ  of the table rotation (for devices 

with a rotary table) or the sensor (for devices with a rotary 
sensor) as well as the sensor structure and position in rela-
tion to the workpiece. Now, consider instruments with a 
rotary table. Let XYZ be a system of Cartesian coordinates 
where the Z axis coincides with the table axis of rotation. 
Assume for simplicity that the sensor tip has spherical 
shape. Then, let R  denote a sum of the workpiece radius 
and the sensor tip radius. The equation of the cylinder area 
for a predetermined  angle of rotation ϕ  has the following 

form 
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where xe , ye  are coefficients of the workpiece cross-

section center for the zero value of the angle ϕ . The posi-

tion of the object in the XY plane is shown in Fig. 1. 
Consider three cases of operation of instruments with a 

rotary table. 
CASE 1. During a measurement, the sensor tip moves 

along a straight line perpendicular to the axis of rotation Z 
(see Fig. 2). Assume that the straight line of the sensor tip 
displacement is described with the following equations 

 dRRx m −+= , 0=y , (4) 

where d  is a value of the sensor indications at zero values 
of xe  and ye . In order to determine the relationship 

)(ϕmR , we need to solve a system of equations (3), (4), 

hence 
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This type of sensor is employed, for example, in the MDL-
10 device designed and used at the FŁT Kraśnik S.A, Po-
land to measure the roundness of cross-sections of races of 
large bearing rings [3].  

The configuration shown in Fig. 2 is not suitable for 
measuring roundness of inner rings or holes. In such a case, 
it is recommended to apply a sensor with a rotary arm, 
which ensures better access to the workpiece. 
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Fig. 1. Position of the workpiece in the XY plane (the X’Y’ system is 

associated with the rotary table, and O denotes the workpiece center). 
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Fig. 2 Measuring sensor with a tip moving along a straight line. 

CASE 2. The sensor tip moves around a circle lying in a 
plane intersecting the axis of rotation Z (see Fig. 3). In addi-
tion, assume that the position of the arm is parallel to the Z-
axis at zero values of xe  and ye . Denote the length of the 

sensor arm by L . From the assumptions we can see that the 
senor tip moves around a circle described by the following 
equations 
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where α  is the angle between the sensor arm and the Z axis. 
Solving the system of equations (3), (6) we obtain the same 
relationship between radius changes mR  and the angle ϕ . 

As opposed to case 1, however, the model (1) includes now 
the nonlinearities connected with the sensor arm rotation. 
The described sensor system is commonly used in devices 
for measuring roundness and cylindricity. 
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Fig. 3. Sensor with a rotary arm where the tip moves around a circle 

lying in the plane including the axis of rotation. 

CASE 3. The sensor tip moves around a circle lying in a 
plane perpendicular to the axis of rotation Z (see Fig. 4). 
Assume that the arm is parallel to the Y axis at zero values 
of xe  and ye . From the assumptions we conclude that the 

sensor tip moves around a circle described with the follow-
ing equations 
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where α  is the angle between the sensor arm and the Y 
axis. The relationship between the shift mR  and the angle 

ϕ  can be established by solving the system of equations (3), 

(7). The apparent form of the relationship )(ϕmR  is omitted 

due to its complexity. The sensor configuration presented 
here is used, for instance, in the Rotary-Talysurf by Taylor 
Hobson. The device is employed for measuring roundness 
and roughness in race cross-sections of bearing rings with a 
diameter up to 70 mm. 

Z

X

Y

 

Fig. 4. Sensor with a rotary arm where the tip moves around a circle 
lying in a plane perpendicular to the axis of rotation. 

In each case, the relationship )(ϕmR  can be written as 

 ),,,()( ϕ+=ϕ yxm eefdR  (8) 

with 0),0,0( =ϕf . By performing a numerical analysis for 

selected values of xe , ye , R  and L , we can show that in 

spite of a completely different analytical form, the properties 
of the function f  are very similar in each of the three cases 

being considered. In the expansion of f  into the Fourier 

series, the first and the second harmonic components are 
predominant.  

3.     DETERMINING THE COEFFICIENTS OF THE 
SENSOR CHARACTERISTIC 

The sensor characteristic can be determined basing on a 
sequence of profile values }{ iwR  established for different 

values of the angle of rotation }{ iϕ , Mi ,...,2,1= . Let us 

formulate the following index characterizing the goodness 
of fit of the sensor characteristic and the measuring data 
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The index J  is a function of the parameters 

1a ,..., 1−na , d , xe , ye . Their values can be determined by 

formulating the optimization task 
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the best solution of which is iteration using the following 
algorithm. 

STEP 1. Assume that the initial values are 

 0=o
xe , 0=o

ye . (11) 

STEP 2. By applying the approximation 
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the index J  is written in the form of 
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STEP 3. The approximate values of parameters θ  are as-
sessed using the following relationship 
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STEP 4. If the solution is not sufficiently accurate, assume 

that x
o
x ee = , y

o
y ee =  and return to Step 2. 

4.   SIMULATION RESULTS 

The aim of the experiments was to provide ready proce-
dures for determining the coefficients of the sensor charac-
teristic using (11)-(17), to perform simulations for the 
exaplary data, and to assess the speed of the algorithm con-
vergence. The calculations were conducted with the aid of 
the Mathematica program and presented in the Mathematica 
Notebook form. Due to space limitations, most results of the 
indirect calculations are hidden. Consider the sensor con-
figuration in Fig. 4. First, derive a formula for the function 

),,( ϕyx eef . By solving Eqs. (3) and (6), we deter-

mine αsin  and αcos . 

In[1] := sol1 =

Solve @
8Hx − ex Cos@ϕD − ey Sin@ϕDL2 +

Hy − ex Sin@ϕD + ey Cos@ϕDL2 � R2,

y � L − L C, x � R + L S, 1 � S2 + C2<,
8x, y, S, C<D;  

Four different solutions are obtained. Note that for 
0== yx ee  the angle of inclination  of the sensor arm 

equals zero. Thus, 0sin =α  and 1cos =α . Now, it is cru-
cial to check which of the solutions satisfies this condition. 

In[2] := FullSimplify @8S, C< ê. sol1 ê. 8ex → 0, ey → 0<,
8R > 0, L > 0<D

Out[2]= :80, 1<, :− 2LR

L2+ R2
, −1+

2L2

L2+ R2
>>

 

It is clear, that the first solution corresponds to the sensor 
configuration presented in Fig. 4. We shall determine the 
function f . Note that its analytical form is quite complex. 

In[3] := f = L S ê. sol1P1T;
f ê. 8ex → ex, ey → ey< êê FullSimplify êê
TraditionalForm  

Out[4]= HHL - sinHjL ex+ cosHjL eyL
, HH-ex

2+ 2 HRcosHjL+ L sinHjLL ex+ 2L R-

ey H2L cosHjL- 2RsinHjL+ eyLL
Hex

2- 2 HRcosHjL+ L sinHjLL ex+ 2L R+

ey H2L cosHjL- 2RsinHjL+ eyLLL-
HR- cosHjL ex- sinHjL eyL H2L2+ ex

2- 2 HRcosHjL+ L sinHjLL
ex+ ey H2L cosHjL- 2RsinHjL+ eyLLL ê

H2 HL2+ R2+ ex
2- 2 HRcosHjL+ L sinHjLL ex+

ey H2L cosHjL- 2RsinHjL+ eyLLL  
Also, it is necessary to determine the partial derivatives of 
the function f . 

In[5] := Dfex = D@f, exD; Dfey = D@f, eyD;  

Now, assume that the values of the coefficients of the sensor 
characteristic are, for example 

In[6] := a1 = 0.01 ; a2 = −0.1; a3 = 0.03 ;  

and that 

In[7] := R = 20; L = 60;  

To generate a sequence of samples of a measured profile we 
need an inverse characteristic of the sensor. 

In[8] := sol2=SolveAx+a1 x
2
+a2 x

3
+a3x

4
�y, 8x<E; 

In this case, too, we obtain four solutions. In order to check 
which of them is adequate, we use the fact that the 
characteristic goes through point (0,0).  

In[9] := Hx ê.sol2L ê.y→ 0 

Out[9:= 82.85933 − 2.408 �, 2.85933 + 2.408 �,

−2.38534 , 4.44089 ×10−16<  

Thus, the inverse characteristic is described by the fourth 
solution. 

In[10] := g@y_D =x ê.sol2P4T; 

We shall generate a measured profile. Assume that we col-
lect 

In[11] := M = 210;  

of profile samples, which are uniformly distributed in the 
angle range )4/,4/( ππ−∈ϕ : 

In[12] := φ{ = π Range @−Mê4, Mê4DêM êê N;
Rm{ = 0.1 +f ê. 8ex → 0, ey → 1< ê. ϕ −> φ{;

Rw{ = g@Rm{D;  

Then, the algorithm determining the coefficients of the char-
acteristic is implemented for  5=n . 

In[15]:= n = 5;

θ = Table @0, 8n +2<D;  

In[17]:= For@i = 1, i ≤ 3, i++,

v =

Rw{ −

Hf − Dfex ex − Dfey ey ê.
8ex → θPn + 1T, ey −> θPn + 2T< ê.

ϕ −> φ{L;
w = Join@Table @Rw{i, 8i, 2, n<D,

8−1 + 0 φ{, −Dfex , −Dfey< ê.
8ex → θPn + 1T, ey −> θPn + 2T< ê.

ϕ −> φ{D;
θ = −Inverse @w.Transpose @wDD.Hw.vL;
Print @θDD  

 8−0.0139876 , −0.099286 , 0.0347172 ,

−0.00166182 , 0.0764533 , −0.00160353 , 0.996441 <  
80.00999956 , −0.0999998 , 0.03 ,

−1.93249 × 10−8, 0.0999993 , 3.44822 × 10−7, 1.<  



80.01 , −0.1, 0.03 ,

9.16771 ×10−10, 0.1, −2.93367 × 10−8, 1.<  

Note that the proper solution was found as early as in the 
third iteration of the algorithm. 

5.   SENSOR CHARACTERISTIC MEASUREMENT 

The method described above was used to determine the 
characteristic of an inductive sensor in the Rotary Talysurf. 
A cylinder with 19=R  mm for which roundness deviation 
did not exceed 0.2 µm was employed as a standard of 
roundness. The measuring range for the device sensor was 
±200 µm. This device ensures measurement of a profile in a 
range of angle variations of up to 210 degrees. Figure 5 
shows a sequence of samples of a profile used for determin-
ing the characteristic. Note that the sensor deflection com-
prises the entire available measurement range . The sensor 
characteristic was approximated with a polynomial of the 

4=n  order. Figure 6 presents the error of nonlinearity of 
the identified sensor characteristic. We can see that the error 
reaches 1% of the measuring range. 
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Fig. 5. Sequence of profile samples used for determining the sensor 
characteristic. 
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Fig. 6. Error of sensor nonlinearity wmm RRR −=∆ . 

6.   CONCLUSIONS 

The work discusses a method for determining the charac-
teristics of  a displacement sensor used in devices for round-
ness and cylindricity measurement. An advantage of this 
method is that it is not necessary to apply additional stan-
dards or laboratory stands. Measurements are performed 
directly on the instrument using its regular equipment. 

The method accuracy is affected by the assumptions 
concerning the sensor configurations. One of the require-
ments is that the line of the sensor tip displacement and the 
axis of rotation of the sensor system presented in Fig. 2 

should intersect. Before each measurement, it is essential to 
set the sensor precisely, otherwise the measured profile of 
an object being in a eccentric position will be greatly af-
fected by the shift value of the sensor displacement line in 
relation to the rotation axis [2]. The effect of this shift can 
be reduced by applying standards with considerable diame-
ters, for which an excitation is more similar to a sinusoidal 
excitation. It is not always possible, though. For instance, 
while using a Rotary Talysurf, the range of the measured 
radii does not exceed 20 mm. The standard errors, however, 
have a much smaller influence on the measurement results. 
Moreover, it is possible to establish the standard errors be-
fore the proper measurement while setting the standard 
centrically. The data can be used for modeling the relation-
ship )(ϕmR . 

It is important that in a system with a rotary arm (Fig. 3) 
the assumed model of nonlinearity is not adequate for meas-
urements of rotary surfaces with variations in the diameter, 
for instance, cones. The sensor deflection caused by a varia-
tion in the radius results in an additional displacement of the 
sensor tip along the Z axis. As it seems to have a consider-
able influence on measurement results, it needs to be in-
cluded in the model. Some general information on the mod-
eling of this type of nonlinearity can be found in Refs. [4], 
[5].  
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