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Abstract: In the paper “A new approach to the examinatiortive measurements of object dimensions, e.g. rdd]i,

of the displacement sensor characteristics” puédistin
Measurement, vol. 28, pp. 261-267Zebrowska-tucyk
proposes a new, interesting method for measuriagtiar-
acteristics of displacement sensors. The methodistom
exciting the sensor tip with a sinusoidal signalihg a
known amplitude. In this paper, the authors modtig
method so that it is possible: (1) to conduct messents
by means of a typical sensor tip with a circulaossr
section, (2) to eliminate the necessity of possgsan addi-
tional measuring eccentricity standard, (3) to deiee the
sensor characteristics on the basis of non-clogeddness
profiles.
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1. INTRODUCTION

Measurements of roundness or cylindricity are gaher
preceded by centering and leveling of an objecttlos
measuring table. It is necessary to make the olgzit
coincide with the table axis of rotation (for deascwith a
rotary table) or with the sensor axis of rotatifor devices
with a rotary sensor). In this way, measurements loa

performed in small measuring ranges and with a drigh

accuracy. Also, it enables to eliminate the geoitgdtr
nonlinearities resulting from the object eccentyidR] and
the nonlinearities of the measuring sensor chaniatite

The centering and

manual skills of an operator, as well. They areipalerly

troublesome if we are to assess cylindricity omidness of
a non-closed profile as a circle sector [3], fostémce, the
cross-sections of rolling bearing races. As a testilthe

development of electronics, it is possible to appBasuring
systems with high resolution. Digital methods ofjrsil

processing help to eliminate the geometrical newrities.
Thus, the centering and leveling of a workpiece ¢mdt be
necessary if the characteristic of the measurings@eis
known.

The knowledge of sensor characteristics can alagibe
ised in measurements of the surface of rotary tdbjeith
varied diameters, e.g. cones, barrels, as weh asmpara-

Moreover, by applying an electronic system of siggtnfts,
we are able to perform accurate measurements aiusar
points of the sensor characteristic, rather thathénvicinity
of a point where the sensor is calibrated.

The new method for measuring the characteristica of
displacement sensor proposed in Ref. [1] involwastiag
the sensor tip with a sinusoidal signal with a kncampli-
tude. It is essential to determine the relationsHiptween
the coefficients of the sensor characteristic dral doeffi-
cients of the trigonometric Fourier series of a sweed
signal. The method requires applying a special stahd
consisting of two cylindrical discs arranged edgeally.
oreover, it is necessary to use a sensor tip avitbctangu-
ar cross-section to cause exact sinusoidal eiaitat

This work proposes a few modifications to the above
method so that it can be used with instrumentsrfeasur-
ing roundness and cylindricity. The method shoukb dle
adequate for measurements of non-closed profiléisowi
applying extra standards or tips. The modificatiatisw
employing a tip with a circular cross-section arededmin-
ing the sensor characteristic on the basis of &il@roeing
the circle sector. As the procedures of the setisaracteris-
tic determination and the sensor calibration apased, an
ordinary roundness standard or any cylindricallyapsd
object with a slight roundness deviation can bealuseana-
lyze the sensor deflections.

leveling operations are time-
consuming and performed in stages. They required go®.

MODELS OF SENSORS EMPLOYED IN IN-
STRUMENTS FOR ROUNDNESS MEASUREMENTS

Let R, denote an indication of a measuring sensor. In
an ideal case, when the sensor characteristimésadj the
sensor indications are in proportion to the charigethe
object radiusR,,, thus

Rn = kRy -

In the above equation, the coefficiekt is the calibration
coefficient, which is determined during the sencalibra-
tion by using standards with known values of déeret, the
standards being regular equipment of the measulénice.
We employ chamfered standards, standards with ah ov



cross-section, roughness standards with a knowmevaf
the coefficient Ra, and grooved standards whergjtbeve
depth is known. The sensors can also be calibegiptying

gauge blocks. In practice, the sensor characteisstionlin-

ear. It is best to approximate it by means of thigmmomial:
measuring roundness of inner rings or holes. I sucase,
it is recommended to apply a sensor with a rotam, a

Rn=K(Ry+ &Ry + 2Ry +..+304R) (1)
which ensures better access to the workpiece.

The numbern will be called the order of approximation.
The objective is to establish the coefficiemis as,...,an—1 AY

of polynomial (1). Assume that the sensor chargstier Y
determination and the sensor calibration are pewddr in-
dependently of each other. Thus, for further caarsitions,
we can assume that the calibration coefficient lnawn R X'
quantity. For the sake of simplicity, it is assunede equal
to one: ¢

k=1. ) e i

According to [1], the coefficients of the sensoadtteris-
tics are established by measuring an object witsmall
roundness deviation placed eccentrically in refatio the
axis of rotation. Assume that the value of ecceityriis
selected in such a way that the sensor tip displené dur-
ing a measurement comprises the entire measurearayg.
A displacement of the sensor tip during a measunéme
depends on the angl¢ of the table rotation (for devices

with a rotary table) or the sensor (for deviceshvétrotary
sensor) as well as the sensor structure and positioela-
tion to the workpiece. Now, consider instrumentghwa
rotary table. Let XYZ be a system of Cartesian dowtes
where the Z axis coincides with the table axis aiftion.
Assume for simplicity that the sensor tip has sighér
shape. Then, leR denote a sum of the workpiece radius
and the sensor tip radius. The equation of thendgli area
for a predetermined angle of rotatign has the following

This type of sensor is employed, for example, & MDL-
10 device designed and used at the FLTSHikaS.A, Po-
land to measure the roundness of cross-sectionascet of
large bearing rings [3].

The configuration shown in Fig. 2 is not suitabbe f

Fig. 1. Position of the workpiece in the XY planetfie XY’ system is
associated with the rotary table, and O denotes theorkpiece center).

form

(X—e,cosh ey sind))2 +(y—ecsing +ey cosd))2 =R? ,(3)

Fig. 2 Measuring sensor with a tip moving along atsaight line.

CASE 2. The sensor tip moves around a circle lym@
plane intersecting the axis of rotation Z (see B)gIn addi-

where e,, e, are coefficients of the workpiece cross-tion, assume that the position of the arm is palrédi the Z-

section center for the zero value of the angjleThe posi-
tion of the object in the XY plane is shown in Flg.

Consider three cases of operation of instrumentis wi

rotary table.

axis at zero values oé, and e, . Denote the length of the

sensor arm by . From the assumptions we can see that the

senor tip moves around a circle described by tHewing
equations

CASE 1. During a measurement, the sensor tip moves

along a straight line perpendicular to the axigatétion Z
(see Fig. 2). Assume that the straight line of gskasor tip
displacement is described with the following eqouadi

z=L-Lcosa, x=R+Lsina,

(6)

-d
a =arctan7L , y=0,

X=R+Ry-d, y=0, ) wherea is the angle between the sensor arm and the Z axis

where d is a value of the sensor indications at zero \@lueS0lving the system of equations (3), (6) we obtassame
of e and e,. In order to determine the relationship relationship between radius changBg and the anglep .

s opposed to case 1, however, the model (1) ieslutw
he nonlinearities connected with the sensor artatiom.
The described sensor system is commonly used iicakev
for measuring roundness and cylindricity.

Rn(9) , we need to solve a system of equations (3), (4
hence

Rn($) =d - R+e, cosp +ey sind

5
+\/R2—(exs‘,inq)—eycos:p)2 ©)




z being considered. In the expansion bf into the Fourier

series, the first and the second harmonic compenarg
predominant.

3. DETERMINING THE COEFFICIENTS OF THE
SENSOR CHARACTERISTIC

The sensor characteristic can be determined basirey
sequence of profile valueR,;} established for different

~

values of the angle of rotatiofp; , i =12,...,M . Let us
formulate the following index characterizing theodaess

of fit of the sensor characteristic and the measudiata

X
M 2
- 2
Fig. 3. Sensor with a rotary arm where the tip move around a circle J= Z(R/\n + alRwi ot an—er/c/i —d-f (ex,ey,dJi )) . (9)
lying in the plane including the axis of rotation. i=1

CASE 3. The sensor tip moves around a circle lyma . . .
plane perpendicular to the axis of rotation Z (5ég 4). The index J is a function of the parameters
Assume that the arm is parallel to the Y axis @b ze@lues @.--@-1.d, €, € . Their values can be determined by

of e, and e, . From the assumptions we conclude that théormulating the optimization task

sensor tip moves around a circle described withfahew- min J(@y,....301,d,6,,8)) (10)
ing equations 8y, an-1,0,6,.8y y

y=L-Lcosa, x=R+Lsina, the best solution of which is iteration using trdidwing

_ -d __ (7)  algorithm.
a= arctan?, z=0,

STEP 1. Assume that the initial values are
where a is the angle between the sensor arm and the Y
axis. The relationship between the shi, and the angle

¢ can be established by solving the system of egu&(3), STEP 2. By applying the approximation
(7). The apparent form of the relationstgy, (¢ is)omitted

e =0, el =0. (11)

due to its complexity. The sensor configurationspreéed Fex. ey, ¢i) DT (ex. ey, 1) (12)
here is used, for instance, in the Rotary-TalysyrfTaylor + 1 ey —eR)+ ' oy, —€)),
Hobson. The device is employed for measuring roassin & &y
and roughness in race cross-sections of bearig rith a
diameter up to 70 mm. where f' o = of (e%.€V.;)/0€, f' o =of (e%.€y,0i)/0ef,
X y
z the indexJ is written in the form of
L] !
Y J=> (v +w6)? v ORY, w;,60R™2,  (13)

i=1

where

~—
4
, € Vi =Ry~ (.6.00) + g B+ o), (14)
X

2 n+2 ' !
w =[R2 LR -1 —f'  —f ], (15)
Fig. 4. Sensor with a rotary arm where the tip move around a circle ! I RW' e;’ 93
lying in a plane perpendicular to the axis of rotaion.

In each case, the relationshify,(¢ can be written as 0=[a...a,1 d g ey]T ) (16)

Rm(9) =d + f(ex.ey,9), (8)  STEP 3. The approximate values of parameterare as-

sessed using the following relationshi
with f (00,¢) = 0. By performing a numerical analysis for g g P

selected values oé,, e,, R and L, we can show that in M o T
0=— > w w WV
. . . . z (A z i Vi
spite of a completely different analytical formethroperties = t

of the function f are very similar in each of the three cases

17)



STEP 4. If the solution is not sufficiently acceaassume
that 7 =e,, ey =€, and return to Step 2.

In]:= a1 =0.01; ap =-0.1; az =0.03;

and that
4. SIMULATION RESULTS in[7]:= R=20; L =60;

The aim of the experiments was to provide readg@ro To generate a sequence of samples of a measuridd pre
dures for determining the coefficients of the serdwrac- need an inverse characteristic of the sensor.
teristic using (11)-(17), to perform simulationsr fthe
exaplary data, and to assess the speed of thatafgaon- In[8]:= so2=%0l ve[X+a1x2 +a x3+a3 x4 =Y, {X}];
vergence. The calculations were conducted withatldeof
the Mathematicgorogram and presented in thiathematica In this case, too, we obtain four solutions. Inesrtb check
Notebookiorm. Due to space limitations, most results of thewhich of them is adequate, we use the fact that the
indirect calculations are hidden. Consider the @emsn- characteristic goes through point (0,0).
figuration in Fig. 4. First, derive a formula fdret function
f(ex.€y.¢). By solving Egs. (3) and (6), we deter- 9= (X/. sol2) /.y-0
minesina andcocsa . OUt[gZ: {2 85933 - 2.408 1, 2.85933 +2.408 1,

-2.38534 , 4.44089 x 10716}

In[1]:= soll =
Sol ve [ Thus, the inverse characteristic is described gy fturth
{(x -ex Cos [@] —ey Sin[e])?+ solution.

(y —ex Sin[e] +ey Cos [¢])? =R?,
y::L—LC,X==R+LS,l==52+C2},
{x, vy, S, C}I; We shall generate a measured profile. Assume tbatol

lect
Four different solutions are obtained. Note that fo

e, =€y, =0 the angle of inclination of the sensor armin[i1]:= M= 210;

In[10] ;= QLY_1 =X /. sol 2[41;

equals zero. Thussina = @nd cosa = 1 Now, it is cru-

cial to check which of the solutions satisfies ttasdition. of profile samples, which are uniformly distributed the

angle rangep O (-1/4,n /4)

In[2]:= FullSinplify [{S, C} /. soll /. {ex -0, ey »0},
{R>0, L>0}] In[12] := ¢>(=7rRange [—M/4, M/4]/M//N
Rt =0.1+f /. {exX >0, ey »1} /. ¢ ->¢f;

2
2LR 2L
Rw =g[Rw];

2 Yzl

outz= {{0. 13, {

Then, the algorithm determining the coefficientshe char-

It is clear, that the first solution correspondsthie sensor o ictic is implemented fon= .5

configuration presented in Fig. 4. We shall deteemihe
function f . Note that its analytical form is quite complex.

In[15]:= N =5;
In@B]:= f =L S /. sol1[1]; 6=Table [0, {n+2}];
f /. {ex sex, ey »ey} // FullSinplify // IN[17]:= For [i =1, i <3, i ++,
Tradi tional Form vV =
Out4]= (L —sin(p) &+ cody) ey) Rw -
V(=€ + 2(Reogp) + Lsin(p)) &+ 2L R (f -Dfex ex -Diey ey /.
ey (2L codgp) - 2Rsin(p) + ey)) {ex > 6[[n +1], ey ->6[n +2]} /.
(€ - 2(Rcogy) + L sin(g)) g + 2L R+ © -> ¢f);
ey (2L cosy) - 2Rsin(p) + e,))) - w=Join [Table [RW', {i, 2, n}],
(R—COg9) & — Sinp) &) (212 + & — 2(Rcogy) + L sin(g)) {-1+0¢s, -Diex, -Diey} /.
&+ ey (2L cody) — 2Rsin(p) + ey)))/ {ex » ©[n + 1], ey ->6[n +2]} /.
(2(L? + R? + € - 2(Rcody) + Lsin(g)) g+ ® -> ¢f];
ey (2L cogy) - 2Rsin(p) + ey))) 6 = -Inverse [w. Transpose [w]]. (W. V);
Also, it is necessary to determine the partial \adgives of Print [6]]
the function f . {-0.0139876 , -0.099286 , 0. 0347172 ,

-0.00166182 , 0.0764533 , -0.00160353 , 0.996441 }

E1:= " Dfex =DIf, ex]; Dey =DIf, eyl {0. 00999956 , -0.0999998 , 0.03,

L. _ -8 -7
Now, assume that the values of the coefficienthefsensor 1.93249 x 1077, 0.0999993 , 3.44822 x 1077, 1.}

characteristic are, for example



(0.01, -0.1, 0.03,
9.16771 x10°19, 0.1, -2.93367 x10°8, 1.)

Note that the proper solution was found as earlynathe
third iteration of the algorithm.

5. SENSOR CHARACTERISTIC MEASUREMENT

The method described above was used to determine {

characteristic of an inductive sensor in the Rofeeysurf.

should intersect. Before each measurement, itssrdigl to
set the sensor precisely, otherwise the measuradepof
an object being in a eccentric position will be ajhe af-
fected by the shift value of the sensor displacérifiea in
relation to the rotation axis [2]. The effect ofstlshift can
be reduced by applying standards with considerdialme-
ters, for which an excitation is more similar t@iausoidal

xcitation. It is not always possible, though. Fustance,

hile using a Rotary Talysurf, the range of the sueed
radii does not exceed 20 mm. The standard errokgever,

A cylinder with R=19 mm for which roundness deviation have a much smaller influence on the measuremenitse
did not exceed 0.21m was employed as a standard ofyjoreover, it is possible to establish the standardrs be-

roundness. The measuring range for the device seve®n

fore the proper measurement while setting the stahd

+200um. This device ensures measurement of a profi in centrically. The data can be used for modelingrétation-

range of angle variations of up to 210 degreesureih

shows a sequence of samples of a profile usedeferin-

ing the characteristic. Note that the sensor diéfleccom-

prises the entire available measurement range .s€hsor
characteristic was approximated with a polynomialthe

n=4 order. Figure 6 presents the error of nonlineasity
the identified sensor characteristic. We can sagttie error
reaches 1% of the measuring range.

Ry [nm]
0.2t

Ny
N

-0.1 ¢+

-0.2 ¢

Fig. 5. Sequence of profile samples used for deteiming the sensor
characteristic.

ARm [pum]

Rw

Fig. 6. Error of sensor nonlinearity AR, = R, - R, -

6. CONCLUSIONS

The work discusses a method for determining theacha

teristics of a displacement sensor used in deYaresund-
ness and cylindricity measurement. An advantagehisf
method is that it is not necessary to apply additicstan-

dards or laboratory stands. Measurements are peztbr

directly on the instrument using its regular equapin

ship Rn(9).

It is important that in a system with a rotary gifig. 3)
the assumed model of nonlinearity is not adequatentas-
urements of rotary surfaces with variations in diemeter,
for instance, cones. The sensor deflection caugedvaria-
tion in the radius results in an additional displaent of the
sensor tip along the Z axis. As it seems to haversider-
able influence on measurement results, it needsetin-
cluded in the model. Some general information @nrtfod-
eling of this type of nonlinearity can be foundRefs. [4],

[5].
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The method accuracy is affected by the assumptions

concerning the sensor configurations. One of trgpiire-
ments is that the line of the sensor tip displaceraad the
axis of rotation of the sensor system presenteéign 2



