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Abstract: In this paper we present an image analysis

method which provides wood quality parameters flarard
and log end images. Our analysis recognizes ammgg in
prepared cutting surface despite of varying colattgsn or
lighting. After locating annual rings accuratelypportions
of earlywood and latewood can be measured glotzaity
locally in the image. Our method is based on combin

Currently we are developing color analysis methtmls
provide indication of rot in wood. This measuremalws
modeling the progression of rot inside the treakruThe
basic problem with color analyses is that lightiagariable
and uneven. Color of an object may vary considgrabl
between images. However, we have shown that color
variation between images can be corrected with@pjate

moving window to principle component analysis (PCA) calibration.

Furthermore, we apply various filtering methodethance
result matrixes.

Keywords: Image Analysis, Wood Quality, PCA, annual

rings.

1. INTRODUCTION

Trees carry their growth history in annual ring$he
appearance and properties of individual tree arengly

The color variation within an image causes prolslem
when identifying individual annual rings. An annuigg has
two parts, lighter area of earlywood and darkelatéwood.

If annual rings has abnormally high proportion atelvood
in a small compact area, the area is called corsjpes
wood. Trees produce such hard wood e.g. when ggpain
the slope. Color of earlywood area may be so dar&ne
part of the image that it is confused with latewamdor at
another location. Therefore simple global thresho&thods

affected by annual growth, which in turn depends orare not applicable. The color of latewood may alsoy

variations in atmospheric and other conditions.
temperatures, rainfall, fertilization and thinning forests
affect the growth of a tree and hence annual riliperefore
the cross section of a tree tells much about gsohy and
thus about its quality, too. This knowledge is dfjh
importance in commercial use in forest-based intasstand
in forest research. The long-term goal of our regde#s to
make the information carried in the annual ringetinre and
related wood quality information available for optars at
sawmills, pulp mills and in harvesters, and alsalfe forest
researchers in research centers. For this purpusdrée
cross-section analyses methods need to be autamated

We have studied both color and texture analysihous
in wood quality analysis. The textural methods agital
images provide average thickness and orientaticanafial
rings locally. Furthermore, we developed methodbtate
tree pith (i.e. center of annual rings) and to meas
thickness of bark using textural methods on digitahges
[1]. Some of these methods have been applied atsoofard
end images, and rather weak, yet useful correldtaween
textural
measurement at sawmills were established [2, 3jpichy

for those methods is that analyses can be madeowtith

tracking individual annual rings.

structures and board firmness and streng

. E.gbetween and within annual rings. In this paper wscdbe

how to solve these problems with a moving windowd an
principle component analysis (PCA).

The goal of our research is to produce efficienid for
developing measurement system for earlywood and
latewood proportions of timber for forest indusirielhe
measurement is made by using digital image analy¥is
suppose that the additional information about tmewnt of
latewood inside the log or board increases infoionabout
firmness and strength of sawn timber compared to ou
earlier method of width of annual rings alone. We a
currently testing this application, but here corirze on the
measurement aspects rather than on the applications

2. IMAGE ANALYSIS WITH MOVING WINDOW
AND PCA

While developing the analysis method we prepared th
board ends to get optimal images. After cuttingslayy
sawing boards the surfaces were sandpapered amdedat

tﬁ)r better color contrast. In this paper all exaespbf images

are taken or calculated from prepared board endesabut
analyses made for similarly prepared log end imgiye
equally good results. It seems that cutting surtdter sharp
chainsaw and with watering provides images withqadée
quality for these image analyses as well. This rmatke



application of the method feasible in productiord an The move step size of the window is optional, fbhe

harvesters, which is currently being tested. size of step affects strongly the computation tiamel the
resolution of the result matrix. If the moving stisplarge,
2.1. Moving window the quality properties are calculated only few aregthin

the log or board end image and the procedure pesdoanly
few quality measures to the result matrix. Thus the
computation is rapid, but resolution of the resubtrix is
poor. With short moving step of window the resaatiof
the result matrix is good but calculation is veiyne
consuming. We have experimented with move stepimgng
from one pixel to two hundred pixels.

The variable and uneven lighting makes the analykis
entire images problematic. Therefore we seek lanalysis
methods with small analysis windows. We have fothmel
moving window a useful method for analyzing and
parameterizing locally the properties of log andudoends
using digital images. The method provided the bdais
thickness field and orientation field of annualggrfound in
our previous research [1,2]. In comparison with .
conventional image analysis methods, the weaknk#si 2.2. PCA for RGB-image
method is longer computation time. However, the Principal component analysis (PCA) is a well-known
development of calculation speed has made it plessio and widely-used signal analysis method [4,5]. PCA
apply such solutions even at production lines and iarranges the data of several variables into linear
harvesters. combinations, the principal components, so that the
components are not correlated. Rearrangement ise mad
through diagonalizing the covariance matrix, andce th
components are ordered according to their contahuto
variance. Major part of variance in entire datdadls into
the first principal component and it can be preserty the
first scoreimage. The second principal component has more

The size of moving window is optional, but usuatye  variance than the third component and so on. Theuatrof
original image sets limits and the final size ohdow is a  principal components is the same as the amountigihal
compromise. We tested window sizes ranging fronvariables. In most cases the few first componertiibe
200x200 pixels to 20x20 pixels. We chose in alldhalysis over 90% of variation, and the rest of components a
presented here (results in Figures 5-7) the winde of negligible. Thus PCA is commonly used to reduce @mho
40x40 pixels, to be compared with typical effectimage of variables with minimum loss of information. PG#\also
area of 587x1931 pixels. However, in Figures 1 arithe used to seek statistically independent combinatiofis
window size is 100x100 pixels for better visualzinThe variables. Thdoadingsof a principal component describe
window size should be larger than the thickestlsimgnual the contribution of each original variable to thenpipal
ring in the board or log to be measured. The estinedh component.
thickest annual ring within a single log or boardtlean be
measured using the methods developed in our prgviol
research [1, 2]. The window may cover many annumgjst 10
but larger window increases the analysis time.itn E the
moving window is passing widest annual rings. 20

In the moving window approach the analysis procesiur
are carried out for a small window at a time. Thsuit of
the analysis is associated in the area of resutixr@nage)
to the location of the centre of the current windmwthe
original image.
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Fig. 2. The first principal component image after calculathg PCA for
the window of 100x100 pixels. The use of PCA rearranges the dath
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Fig. 1.100x100 pixel sized moving window sliding acrossetprepared the image and hence gives better contrast.
board end image. The size of window is chosen lagthan the widest . .
annual rings (including earlywood and latewood). We applied PCA to enhance the contrast of images. W

have only three variables in an image, red, greehldue



channel intensity, and thus three principal comptsieThe
first principal component has the maximum variaritds

related to the annual ring structure, and thusgyihe best
information and the strongest contrast of the ring&e

chose the first principal component, rather thaigioal

color channels or their average, to determine #rg/wood

and latewood proportions within the moving windcand

here neglect the other two components. An examptae

first principal component of PCA calculated from

100x100 window is presented in Fig. 2.

2.3. Thresholding the score image of PCA

In the coniferous forest zone softwood specieslyce
one annual ring on the outer surface per yearptimgtime
trees produce larger cells and grow rapidly. Largelts
cause the lighter color visible in the cutting sed. This
part of a single annual ring is called earlywooah
summertime growing slows down, cells become smalher
color gets darker. The darker part of annual rimgalled
latewood. We should notice that darkening happiithes by
little and there is no sharp edge between earlywaod
latewood. In wintertime trees are not active, beeaof
frozen solids. Next spring trees begin to grow dapagain
and now the sharp edge between dark and light calobe
noticed. Therefore, even if we had similarly cotbennual
rings within the window there would be large vadat of
color shades. Weather conditions during each spaing
summer also have an effect to the growing and ithe &
the cells. This causes variation between annugl cwolors,
especially in latewood area. Latewood intensityiatens
between and within annual rings can be noticeddnE
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Fig. 3.Histogram of the window in Fig. 2. X-axis describemtensity
values after PCA. Y-axis tells the amount of pixels the window
representing each intensity value.

large variation of intermediate intensities. Thesgfion is
which score image levels should be taken into attcaten
identifying latewood areas. We have chosen thestiuld in
a rather simple way: we calculate the mean of t®gram.
The mean sets the threshold near the dominatiremsity
value of the window, thus it emphasizes minorityuea.
Another simple and feasible way to choose threshgld
value is to calculate the mean values for upper laner

a25% percentiles (400 highest and 400 lowest pixelres
values in 40x40 window), and then to choose thestwld
to be the mean of these two numbers. Hence thehbids
vary from window to window. The method attemptdital
clear annual rings from current window by incregstolor
contrast although there are latewood areas witly irght
colors.

Thresholding can be made with advanced methcds al

| e.g. fitting Gaussian mixture models (GMM) into the

intensity data, but these methods need more coniputa
time [6]. When applying the methods in prototypes f
industrial applications, high requirements are det
thresholding speed and accuracy.

3. BINARY IMAGE OF SEPARATE ANNUAL RINGS

The length of the moving step of the window is the
application specific. If it is sufficient to knovadywood-to-
latewood proportion of log or board with low redidn
only, the moving step both in x- and in y-direcgomay be
chosen even larger than the window size. In suaase
there are only few samples taken from a log or ¢haard
but this is usually sufficient for obtaining a gldkestimate
of earlywood-to-latewood proportion with the PCA thed.
Section 4. describes the local and global earlywtoed
latewood analysis.

3.1. Construction of resulting binary image

When the move step of window both in x- and in y-
direction is chosen equal to or smaller than thee gif
moving window, an entire binary image of individaainual
rings and the local and global earlywood and latavo
parameters can be constructed with PCA score imdfes
the step is equal to the window size corner an@salccur
in the resulting binary image. The smaller the mg\step is
the less corner anomalies and the better the iegudtnary
image. In the following, results and images aresgnéed
with maximum resolution.

The corner anomalies, shown in Fig. 4, arise dsvis.
We choose in the analysis window size of 40x40 Ipixe
according to the widest annual rings in our origibaard
image and the move step of the window the samé@s t
linear size of the window, i.e. 40 pixels. It medahen that
the original image is divided to 40x40 pixel siagthdows
and the PCA is carried out for the windows. Remdtrix is
formed by combining all first component score windo

In the case of Fig2 thresholding is possible, whereas forblocks into the entire result matrix. Then, typigahere will

original full image or its PCAscore image it would not be
the caseFig. 3 presents the histogram of the image in Fig.

showing the same intensity variation. There areombt two
peaks for high and low valued pixels, but theralso a

be some corner anomalies in the result imagesciedlyein

the areas having considerable darker color than
surrounding colors. Fig. 4 shows a zoomed areaxflting
matrix having such corner anomalies. Comparing area

in



with the upper left area of original image in Figwe notice
the dark late wood area, which causes anomaliestivg
resulting matrix. In some cases corner anomalieg coaer
adjacent annual rings so that the rings can natis¥eerned
at all.
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Fig. 4.Zoomed area of resulting matrix. Corner shaped anomlies
occur near considerable varying colors in originalmage. Anomalies
cover adjacent annual rings patrtially.

image combined from PCA first component scores. The
move step of the window was 2 pixels for highesbhation
possible and correspondingly the center part a@s anly
2x2 pixels from each 40x40 pixel PCA analysis. The
resulting image is quite clear as manifested in Itheer
image of Fig 5. Even the narrowest annual rings lban
discerned in the binary result matrix.

4. EARLYWOOD-TO-LATEWOOD ANALYSES

In timber production there is a need for measuring
locally the earlywood-to-latewood proportion, inrfieaular
in logs. If the slow and rapidly grown annual rireged their
earlywood-to-latewood proportion can be measuréd t
information helps to optimize the sawing of the.log

The moving window was found a useful tool for
obtaining earlywood and latewood estimates fromethiére
binary image. The window size of 40x40 pixels whesen
still, because of the widest annual rings.

4.1. Evaluating global earlywood-to- latewood proportion

After constructing the binary image with separeaual
rings, the global estimate for percentage propostiof early
and late wood within entire log or board end isaoted
simply by counting proportions of white and bladkegts. If
the analysis is made for images from both ends lofyaa
board), the earlywood-to-latewood proportion inside log
(the board) can be evaluated.

If the binary image of separated annual rings @ n

The problem was overcome as follows. The sizehef t needed and the low resolution earlywood-to-latewood
moving window was maintained at 40x40 pixels and th proportion field is enough the move step of thedeiw can

threshold was evaluated as explained above. Nowaddsof
placing the entire 40x40 pixel sized first compadnstore
image into the result matrix, only the center wdirthe score
image was placed. The size of center part is ogkidrut it
determines the length of the step: E.g. center gfasize
10x10 pixels requires that the move step size efitimndow
is 10 pixels. The smaller the center part, thegdkte result,
however at the expense of computation time.

3.2. Enhancing the resulting binary image

After building the result binary image, it was enbed
by simple morphological image analysis routined. séhall
disjoint areas, smaller than 20 pixels, were rerdovihe
small holes within latewood areas were filled sanlil.

be more than 40 pixels here. The global earlywasd-t
latewood proportion is still available by countiand adding
the black and white pixels of individual center tpaof
windows.

4.2. Earlywood-to-latewood proportion field

The local earlywood-to-latewood proportion was
estimated by counting the percentage proportionbladk
and white pixels within the moving window simultansly
when calculating thresholded PCA score blocks faire
binary image of separated annual rings. These ptrge
values were inserted into the result matrix as arpd
above.

Fig. 6 presents the local earlywood-to-latewood
proportion as a field calculated simultaneouslyhwihe

Fig. 5 presents the original RGB image of a preparepinary image in Fig. 5. The move step of the windoas

board end. The variations of shades of brown withia
image are clearly noticeable. In particular, thepampleft
corner has very dark and thick late wood part clirgle

annual ring. There are large color variations betwe
earlywood areas at different annual rings in theterearea

as well. Lower image in Fig. 5 shows the resultigary

been 2 pixels to obtain the best resolution for Iiveary
image. The darker a point in the image is, théhdiighe
proportion of latewood in the neighborhood of tipaint.
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Fig. 5. The original prepared board end image above. Resiiftg binary image below after combining PCA score licks and enhancing procedure.
Moving window size is 40x40 pixels, center area si2x2 pixels. Earlywood areas are marked white, tewood areas black. Individual annual rings
are clear despite of varying color levels in origial image. Axes tell the pixel locations.
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Fig. 6. Earlywood-to-late wood proportion field presented & an image. The areas of high proportions of lateveal denoted as dark. Ghost effect of
annual rings is noticeable
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Fig. 7. After spectral filtering earlywood-to-latewood proportion field image, it presents locally the areas of high proportions of latvood as dark
points. The ghost effect of annual rings is removed

4.3. Low-pass filtering in spectral domain to remove the inverse of the width of the widest annual ringisd all
variation caused by annual rings variations above this frequency were removed. Quoft
frequency is 1/40 pixels. The low-pass filteringswamply
a sharp cutting edge in the frequency domain. Ttien
filtered Fourier transform was inverted to spati@main.
Fig. 7 shows the final result after filtering witbutoff
frequency 1/40 pixels. Comparing Figures 6 anderdltan
be noticed dark and light areas in correspondimgtlons,
but the high frequency variation caused by annuasr
almost vanishes and high resolution earlywood-tewaod
content remains. Resolution can be easily reduced b
decreasing the cutoff frequency, if needed.

In Fig. 6 the ghost effect of annual rings cambéced
within the earlywood-to-latewood proportion field ahort
wavelength variation. We removed this variationngsiow
pass filtering in spectral domain [7, 8]. The eadpd-to-
latewood proportion image was expanded into a squar
Values outside the earlywood-to-latewood proportiiehd
were filled with the mean value of the field. Thyare was
Fourier transformed using Fast Fourier TransforrRT(F
The cutoff frequency of the low-pass filter shobkd at most



5. CONCLUSION

In this paper we have presented an efficient way t
measure some quality parameters of high industriaé

relevance from log and board ends. Methods ardeapph
images of prepared log or board ends, but in oesqnt
tests log ends cut with sharp chains saw have fmerd
sufficient as well. Basis of these methods is tG& RN the
moving window, which enables local annual ring sisas.
PCA was found a particularly good tool for increasthe
contrast and for determining the threshold levelderiving
binary images.

The binary image in Fig. 5 provides opportunities

appropriately compensated. We have developed alysis
methods by using MATLAB developing environment, and
we have used camera calibration function library fo
orrection. One calibration tool set for MATLAB is
available for free in the web [8].
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