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Abstract: In this paper we present an image analysis 
method which provides wood quality parameters from board 
and log end images. Our analysis recognizes annual rings in 
prepared cutting surface despite of varying color pattern or 
lighting. After locating annual rings accurately, proportions 
of earlywood and latewood can be measured globally and 
locally in the image. Our method is based on combining 
moving window to principle component analysis (PCA). 
Furthermore, we apply various filtering methods to enhance 
result matrixes. 
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1.   INTRODUCTION 

 Trees carry their growth history in annual rings.  The 
appearance and properties of individual tree are strongly 
affected by annual growth, which in turn depends on 
variations in atmospheric and other conditions. E.g. 
temperatures, rainfall, fertilization and thinning of forests 
affect the growth of a tree and hence annual rings. Therefore 
the cross section of a tree tells much about its history and 
thus about its quality, too. This knowledge is of high 
importance in commercial use in forest-based industries, and 
in forest research. The long-term goal of our research is to 
make the information carried in the annual ring structure and 
related wood quality information available for operators at 
sawmills, pulp mills and in harvesters, and also for the forest 
researchers in research centers. For this purpose the tree 
cross-section analyses methods need to be automated.  

 We have studied both color and texture analysis methods 
in wood quality analysis. The textural methods on digital 
images provide average thickness and orientation of annual 
rings locally. Furthermore, we developed methods to locate 
tree pith (i.e. center of annual rings) and to measure 
thickness of bark using textural methods on digital images 
[1]. Some of these methods have been applied also for board 
end images, and rather weak, yet useful correlation between 
textural structures and board firmness and strength 
measurement at sawmills were established [2, 3]. Typical 
for those methods is that analyses can be made without 
tracking individual annual rings.  

 Currently we are developing color analysis methods to 
provide indication of rot in wood. This measurement allows 
modeling the progression of rot inside the tree trunk. The 
basic problem with color analyses is that lighting is variable 
and uneven. Color of an object may vary considerably 
between images. However, we have shown that color 
variation between images can be corrected with appropriate 
calibration. 

 The color variation within an image causes problems 
when identifying individual annual rings. An annual ring has 
two parts, lighter area of earlywood and darker of latewood. 
If annual rings has abnormally high proportion of latewood 
in a small compact area, the area is called compression 
wood. Trees produce such hard wood e.g. when growing on 
the slope. Color of earlywood area may be so dark in one 
part of the image that it is confused with latewood color at 
another location. Therefore simple global threshold methods 
are not applicable. The color of latewood may also vary 
between and within annual rings. In this paper we describe 
how to solve these problems with a moving window and 
principle component analysis (PCA).   

 The goal of our research is to produce efficient tools for 
developing measurement system for earlywood and 
latewood proportions of timber for forest industries. The 
measurement is made by using digital image analysis. We 
suppose that the additional information about the amount of 
latewood inside the log or board increases information about 
firmness and strength of sawn timber compared to our 
earlier method of width of annual rings alone. We are 
currently testing this application, but here concentrate on the 
measurement aspects rather than on the applications. 

2. IMAGE ANALYSIS WITH MOVING WINDOW 
AND PCA 

While developing the analysis method we prepared the 
board ends to get optimal images. After cutting logs or 
sawing boards the surfaces were sandpapered and watered 
for better color contrast. In this paper all examples of images 
are taken or calculated from prepared board end images, but 
analyses made for similarly prepared log end image give 
equally good results. It seems that cutting surface after sharp 
chainsaw and with watering provides images with adequate 
quality for these image analyses as well. This makes the 



application of the method feasible in production and in 
harvesters, which is currently being tested. 

2.1. Moving window 

The variable and uneven lighting makes the analysis of 
entire images problematic. Therefore we seek local analysis 
methods with small analysis windows. We have found the 
moving window a useful method for analyzing and 
parameterizing locally the properties of log and board ends 
using digital images. The method provided the basis for 
thickness field and orientation field of annual rings found in 
our previous research [1, 2]. In comparison with 
conventional image analysis methods, the weakness of this 
method is longer computation time. However, the 
development of calculation speed has made it possible to 
apply such solutions even at production lines and in 
harvesters.  

In the moving window approach the analysis procedures 
are carried out for a small window at a time. The result of 
the analysis is associated in the area of result matrix (image) 
to the location of the centre of the current window in the 
original image. 

The size of moving window is optional, but usually the 
original image sets limits and the final size of window is a 
compromise. We tested window sizes ranging from 
200×200 pixels to 20×20 pixels. We chose in all the analysis 
presented here (results in Figures 5-7) the window size of 
40×40 pixels, to be compared with typical effective image 
area of 587×1931 pixels. However, in Figures 1 and 2 the 
window size is 100×100 pixels for better visualizing. The 
window size should be larger than the thickest single annual 
ring in the board or log to be measured. The estimate of 
thickest annual ring within a single log or board end can be 
measured using the methods developed in our previous 
research [1, 2]. The window may cover many annual rings, 
but larger window increases the analysis time. In Fig. 1 the 
moving window is passing widest annual rings. 

Fig. 1. 100×100 pixel sized moving window sliding across the prepared 
board end image.  The size of window is chosen larger than the widest 

annual rings (including earlywood and latewood). 

The move step size of the window is optional, too. The 
size of step affects strongly the computation time and the 
resolution of the result matrix. If the moving step is large, 
the quality properties are calculated only few areas within 
the log or board end image and the procedure produces only 
few quality measures to the result matrix. Thus the 
computation is rapid, but resolution of the result matrix is 
poor. With short moving step of window the resolution of 
the result matrix is good but calculation is very time 
consuming. We have experimented with move step ranging 
from one pixel to two hundred pixels. 

2.2. PCA for RGB-image 

Principal component analysis (PCA) is a well-known 
and widely-used signal analysis method [4, 5]. PCA 
arranges the data of several variables into linear 
combinations, the principal components, so that the 
components are not correlated. Rearrangement is made 
through diagonalizing the covariance matrix, and the 
components are ordered according to their contribution to 
variance. Major part of variance in entire dataset falls into 
the first principal component and it can be presented by the 
first score image. The second principal component has more 
variance than the third component and so on. The amount of 
principal components is the same as the amount of original 
variables. In most cases the few first components describe 
over 90% of variation, and the rest of components are 
negligible. Thus PCA is commonly used to reduce amount 
of variables with minimum loss of information. PCA is also 
used to seek statistically independent combinations of 
variables. The loadings of a principal component describe 
the contribution of each original variable to the principal 
component.  

 
 
Fig. 2. The first principal component image after calculating PCA for 
the window of 100×100 pixels. The use of PCA rearranges the data of 

the image and hence gives better contrast. 

We applied PCA to enhance the contrast of images. We 
have only three variables in an image, red, green and blue 



channel intensity, and thus three principal components. The 
first principal component has the maximum variance. It is 
related to the annual ring structure, and thus gives the best 
information and the strongest contrast of the rings. We 
chose the first principal component, rather than original 
color channels or their average, to determine the earlywood 
and latewood proportions within the moving window, and 
here neglect the other two components.  An example of the 
first principal component of PCA calculated from a 
100×100 window is presented in Fig. 2.  

2.3. Thresholding the score image of PCA 

 In the coniferous forest zone softwood species produce 
one annual ring on the outer surface per year. In springtime 
trees produce larger cells and grow rapidly. Larger cells 
cause the lighter color visible in the cutting surface. This 
part of a single annual ring is called earlywood. In 
summertime growing slows down, cells become smaller and 
color gets darker. The darker part of annual ring is called 
latewood. We should notice that darkening happens little by 
little and there is no sharp edge between earlywood and 
latewood. In wintertime trees are not active, because of 
frozen solids. Next spring trees begin to grow rapidly again 
and now the sharp edge between dark and light color can be 
noticed. Therefore, even if we had similarly colored annual 
rings within the window there would be large variation of 
color shades. Weather conditions during each spring and 
summer also have an effect to the growing and the size of 
the cells. This causes variation between annual ring colors, 
especially in latewood area. Latewood intensity variations 
between and within annual rings can be noticed in Fig. 2. 

 
Fig. 3. Histogram of the window in Fig. 2. X-axis describes intensity 

values after PCA. Y-axis tells the amount of pixels in the window 
representing each intensity value. 

In the case of Fig. 2 thresholding is possible, whereas for 
original full image or its PCA score image it would not be 
the case. Fig. 3 presents the histogram of the image in Fig. 2 
showing the same intensity variation. There are not only two 
peaks for high and low valued pixels, but there is also a 

large variation of intermediate intensities. The question is 
which score image levels should be taken into account when 
identifying latewood areas. We have chosen the threshold in 
a rather simple way: we calculate the mean of the histogram. 
The mean sets the threshold near the dominating intensity 
value of the window, thus it emphasizes minority values. 
Another simple and feasible way to choose thresholding 
value is to calculate the mean values for upper and lower 
25% percentiles (400 highest and 400 lowest pixel score 
values in 40x40 window), and then to choose the threshold 
to be the mean of these two numbers. Hence the thresholds 
vary from window to window. The method attempts to find 
clear annual rings from current window by increasing color 
contrast although there are latewood areas with very light 
colors. 

  Thresholding can be made with advanced methods also, 
e.g. fitting Gaussian mixture models (GMM) into the 
intensity data, but these methods need more computation 
time [6]. When applying the methods in prototypes for 
industrial applications, high requirements are set for 
thresholding speed and accuracy.   

3. BINARY IMAGE OF SEPARATE ANNUAL RINGS  

 The length of the moving step of the window is the 
application specific. If it is sufficient to know earlywood-to-
latewood proportion of log or board with low resolution 
only, the moving step both in x- and in y-directions may be 
chosen even larger than the window size. In such a case 
there are only few samples taken from a log or board end 
but this is usually sufficient for obtaining a global estimate 
of earlywood-to-latewood proportion with the PCA method. 
Section 4. describes the local and global earlywood-to-
latewood analysis. 

3.1. Construction of resulting binary image 

 When the move step of window both in x- and in y-
direction is chosen equal to or smaller than the size of 
moving window, an entire binary image of individual annual 
rings and the local and global earlywood and latewood 
parameters can be constructed with PCA score images. If 
the step is equal to the window size corner anomalies occur 
in the resulting binary image. The smaller the moving step is 
the less corner anomalies and the better the resulting binary 
image. In the following, results and images are presented 
with maximum resolution. 

 The corner anomalies, shown in Fig. 4, arise as follows. 
We choose in the analysis window size of 40×40 pixels 
according to the widest annual rings in our original board 
image and the move step of the window the same as the 
linear size of the window, i.e. 40 pixels. It means then that 
the original image is divided to 40×40 pixel sized windows 
and the PCA is carried out for the windows. Result matrix is 
formed by combining all first component score window 
blocks into the entire result matrix. Then, typically there will 
be some corner anomalies in the result images, especially in 
the areas having considerable darker color than in 
surrounding colors. Fig. 4 shows a zoomed area of resulting 
matrix having such corner anomalies. Comparing the area 



with the upper left area of original image in Fig. 5 we notice 
the dark late wood area, which causes anomalies into the 
resulting matrix. In some cases corner anomalies may cover 
adjacent annual rings so that the rings can not be discerned 
at all. 

 
Fig. 4. Zoomed area of resulting matrix. Corner shaped anomalies 

occur near considerable varying colors in original image. Anomalies 
cover adjacent annual rings partially. 

 The problem was overcome as follows. The size of the 
moving window was maintained at 40×40 pixels and the 
threshold was evaluated as explained above. Now instead of 
placing the entire 40×40 pixel sized first component score 
image into the result matrix, only the center part of the score 
image was placed. The size of center part is optional, but it 
determines the length of the step:  E.g. center part of size 
10×10 pixels requires that the move step size of the window 
is 10 pixels. The smaller the center part, the better the result, 
however at the expense of computation time.  

3.2. Enhancing the resulting binary image 

After building the result binary image, it was enhanced 
by simple morphological image analysis routines. All small 
disjoint areas, smaller than 20 pixels, were removed. The 
small holes within latewood areas were filled similarly.  

Fig. 5 presents the original RGB image of a prepared 
board end. The variations of shades of brown within the 
image are clearly noticeable. In particular, the upper left 
corner has very dark and thick late wood part of a single 
annual ring. There are large color variations between 
earlywood areas at different annual rings in the center area 
as well. Lower image in Fig. 5 shows the resulting binary 

image combined from PCA first component scores. The 
move step of the window was 2 pixels for highest resolution 
possible and correspondingly the center part area was only 
2×2 pixels from each 40×40 pixel PCA analysis. The 
resulting image is quite clear as manifested in the lower 
image of Fig 5. Even the narrowest annual rings can be 
discerned in the binary result matrix. 

4. EARLYWOOD-TO-LATEWOOD ANALYSES   

 In timber production there is a need for measuring 
locally the earlywood-to-latewood proportion, in particular 
in logs. If the slow and rapidly grown annual rings and their 
earlywood-to-latewood proportion can be measured, the 
information helps to optimize the sawing of the log. 

 The moving window was found a useful tool for 
obtaining earlywood and latewood estimates from the entire 
binary image. The window size of 40×40 pixels was chosen 
still, because of the widest annual rings.  

4.1. Evaluating global earlywood-to- latewood proportion  

 After constructing the binary image with separate annual 
rings, the global estimate for percentage proportions of early 
and late wood within entire log or board end is obtained 
simply by counting proportions of white and black pixels. If 
the analysis is made for images from both ends of a log (a 
board), the earlywood-to-latewood proportion inside the log 
(the board) can be evaluated. 

 If the binary image of separated annual rings is not 
needed and the low resolution earlywood-to-latewood 
proportion field is enough the move step of the window can 
be more than 40 pixels here. The global earlywood-to-
latewood proportion is still available by counting and adding 
the black and white pixels of individual center parts of 
windows. 

4.2. Earlywood-to-latewood proportion field 

 The local earlywood-to-latewood proportion was 
estimated by counting the percentage proportions of black 
and white pixels within the moving window simultaneously 
when calculating thresholded PCA score blocks for entire 
binary image of separated annual rings. These percentage 
values were inserted into the result matrix as explained 
above.  

 Fig. 6 presents the local earlywood-to-latewood 
proportion as a field calculated simultaneously with the 
binary image in Fig. 5. The move step of the window has 
been 2 pixels to obtain the best resolution for the binary 
image.  The darker a point in the image is, the higher the 
proportion of latewood in the neighborhood of that point.



 

 
Fig. 5. The original prepared board end image above. Resulting binary image below after combining PCA score blocks and enhancing procedure. 
Moving window size is 40x40 pixels, center area size 2x2 pixels.  Earlywood areas are marked white, latewood areas black. Individual annual rings 

are clear despite of varying color levels in original image. Axes tell the pixel locations. 

 
Fig. 6. Earlywood-to-late wood proportion field presented as an image. The areas of high proportions of latewood denoted as dark. Ghost effect of 

annual rings is noticeable. 

 
Fig. 7. After spectral filtering  earlywood-to-latewood proportion field image, it presents locally the areas of high proportions of latewood as dark 

points. The ghost effect of annual rings is removed.

4.3. Low-pass filtering in spectral domain to remove 
variation caused by annual rings 

 In Fig. 6 the ghost effect of annual rings can be noticed 
within the earlywood-to-latewood proportion field as short 
wavelength variation. We removed this variation using low 
pass filtering in spectral domain [7, 8]. The earlywood-to-
latewood proportion image was expanded into a square. 
Values outside the earlywood-to-latewood proportion field 
were filled with the mean value of the field. The square was 
Fourier transformed using Fast Fourier Transform (FFT). 
The cutoff frequency of the low-pass filter should be at most 

the inverse of the width of the widest annual rings, and all 
variations above this frequency were removed. Our cutoff 
frequency is 1/40 pixels. The low-pass filtering was simply 
a sharp cutting edge in the frequency domain. Then the 
filtered Fourier transform was inverted to spatial domain. 
Fig. 7 shows the final result after filtering with cutoff 
frequency 1/40 pixels. Comparing Figures 6 and 7 there can 
be noticed dark and light areas in corresponding locations, 
but the high frequency variation caused by annual rings 
almost vanishes and high resolution earlywood-to-latewood 
content remains. Resolution can be easily reduced by 
decreasing the cutoff frequency, if needed. 



5.  CONCLUSION 

 In this paper we have presented an efficient way to 
measure some quality parameters of high industrial 
relevance from log and board ends. Methods are applied on 
images of prepared log or board ends, but in our present 
tests log ends cut with sharp chains saw have been found 
sufficient as well. Basis of these methods is the PCA in the 
moving window, which enables local annual ring analyses. 
PCA was found a particularly good tool for increasing the 
contrast and for determining the threshold level for deriving 
binary images. 

 The binary image in Fig. 5 provides opportunities to 
measure many new wood quality parameters. We believe 
that the automated measurement of quality parameters is of 
high economic potential within forest-based industries and 
we see the measurement of earlywood-to-latewood 
proportion globally and locally in the image as one part of 
the quality measure set available for future wood supply and 
production chain. 

 We admit that our present method is still a prototype 
version, and it is vulnerable for defects in the original 
image, e.g. knots, rot, or cracks in wood. Our method might 
recognize those defects as latewood areas and might give 
too high proportion of latewood.  However, we have 
developed a method for detecting the defected areas in the 
images and neglecting them from calculation [2]. 

We see high potential also in our method, as it is able to 
separate individual annual rings despite of varying lighting 
and color circumstances. After tracking annual rings 
accurately, it is feasible to count annual rings within log or 
board end. E.g. in Sweden the number of annual rings at 
distance of 2-8cm from the centre of annual rings is an 
important quality parameter in log classification and should 
thus be made automatically measurable. 

The methods explained above can be developed further. 
In our previous research based on texture analysis we have 
developed the method for measuring the orientation of 
annual rings at any location within log or board ends [1, 2]. 
When combining the present results with our previous 
research, it is possible to reduce measurement problems 
caused by defects. The common problems, - incorrect 
connection between annual rings and breaks within the 
single annual ring - can be avoided, when orientation of 
annual ring is available.  

We are also developing our methods more robust to 
facilitate them for less prepared log end images. We expect 
that combining the results gives new views for developing 
an automatic compression wood recognition system. In 
forest research the question about correlation between the 
earlywood-to-latewood proportion and thickness and area of 
annual rings, and annual height growth is addressed.  
However, a prerequisite for image-based measurement of 
the quality parameters is that annual rings are visible to the 
naked eye in the original image. 

When developing applications based on these methods, 
camera calibration is important. For the measurement to be 
correct the radial and tangential lens errors must be 

appropriately compensated. We have developed our analysis 
methods by using MATLAB developing environment, and 
we have used camera calibration function library for 
correction. One calibration tool set for MATLAB is 
available for free in the web [8].  
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