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Abstract: The weighted mean has been used to 
estimate the common mean of several populations with 
unknown and different variances. However, the 
traditional estimator of the variance of the weighted 
mean estimator underestimates the variance. Two new 
variance estimators are proposed with smaller biases 
and correspondingly formed intervals that have much 
better coverage probabilities for the mean. Results are 
extended to the general case with both Type A and 
Type B uncertainty components being presented. 
 
 
1. INTRODUCTION 
 
     In statistics we consider a linear model for k  sets of 
random variables with a common mean such as 
 
                 ,ij ijX µ ε= +                     (1) 

 
where µ  is the common mean and the errors,ijε ’s for 

1,...,i k=  and 1,..., ij n=  are mutually independent and 

normally distributed with zero mean and variance 
2( 1,..., )i i kσ = . The common mean,µ  can be estimated 

by a weighted mean,  
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where the weights iw ’s satisfy 0 1iw≤ ≤  and 
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From Graybill and Deal [1], wX  is the unbiased 

estimator of µ  with a minimum variance among all the 

weighted means when the weights are 
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where ' 2 2 /i i inσ σ=  provided that all the variances 

are known. In practice, however, 2( 1,..., )i i kσ =  are 

unknown. Thus, iw ’s are usually estimated by  

              
'2

'2
1

1

ˆ ,
1

i
i k

j j

S
w

S=

=
∑

                               (5) 

 
where  '2 2 /i i iS S n=  and 2

iS  is the sample 

variance estimated using ( 1,..., )ij iX j n= . The 

corresponding weighted mean denoted by  
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is called the Graybill-Deal estimator of the 
common mean. In metrology, the Graybill-Deal 
estimator is often called the weighted mean. 
Weighted mean estimators such as the Graybill-
Deal estimator have been used widely in practice to 
combine the results from several laboratories or 
based on several measurement methods. With the 
recent signing of the mutual recognition 
arrangement (MRA), national metrology institutes 
(NMIs) and regional metrology organizations 
(RMOs) around the world have committed to 
establishing the equivalence of measurement 
standards through key comparisons of national 
measurement standards. In key comparison studies, 
Graybill-Deal estimator or the weighted mean were 
often used to estimate the key comparison 
reference value (KCRV). It is well known that the 
variance of an estimator is as important as the 
estimator itself. In this paper, some new estimators 
of the variance of the Graybill-Deal estimator GDX  
are proposed. In second section, some properties of 
the variance estimators of the Graybill-Deal 



 2 

estimators are discussed. In the third section, two 
new estimators of the variance of the Graybill-Deal 
estimator are proposed. Comparisons are made 
among various estimators of the variance of the 
Graybill-Deal estimator. In Section 4, results are 
extended to the general case with both Type A and 
Type B uncertainty components being presented. 
Conclusions are given in the last section. 
Throughout the paper, we assume that ijε  or 

equivalently ijX  are independently normally 

distributed. 
 
 

 2. PROPERTIES OF THE VARIANCE OF wX  

 AND GDX  AND THEIR ESTIMATORS 
 
         Under our normal assumption wX  is normally 

 distributed with mean µ . For wX  with weights iw  

 defined in (4), the corresponding variance is  
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 GDX  defined in (6) is an unbiased estimator of µ . 

 Based on (7), many practitioners and metrologists 
 e.g. [2], use the following statistic to estimate 
 GDVar[ ]X                 

             � GD

'2
1

1
Var[ ] .

1k

i i

X

S=

=
∑

        (8)  

 
 We can show that                                      
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 The proof can be found in [3]. Thus, the traditional 

 variance estimator � GDVar[ ]X  in (8) underestimates 

 both Var[ ]wX  and GDVar[ ]X . In the next section, 

 we propose two alternative estimators of 
 GDVar[ ]X . 

 
 

 3. TWO ALTERNATIVE ESTIMATORS OF  
 GDVar[ ]X  

   
         It is shown in [3] that  
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 Thus, a modified estimator for Var[ ]wX  and also 

 for GDVar[ ]X  is given by 
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 It can be shown that 
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 The proof can be found in [3]. In particular, when 
 in n=  for 1,...,i k= ,  
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Thus, � 1 GDVar [ ]X  and � GDVar[ ]X  have a difference 

of a factor of ( 1) ( 3)n n− − . For example, when 

20n = , the ratio of these two estimators is 1.12. 
However, when n  is small, e.g., when n = 5, the 

ratio is 2. That is, � 1 GDVar [ ]X  is twice as large 

as� GDVar[ ]X . Thus, in estimating GDVar[ ]X , 

�
1 GDVar [ ]X  has a smaller bias than that of 

�
GDVar[ ]X . 

 
Based on [4], using a second order approximation 
we propose another estimator of Var[ ]GDX : 
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where  
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In particular, when in n= , ˆi iw w=%   

                � �
2 1GD GDVar ( ) Var ( ).X X≥  

 
Simulations have also been done to compare the 

three estimators:� GDVar[ ]X , �
1 GDVar [ ]X , and 

�
2 GDVar [ ]X . We used 5in = and 15 and some 

variance structures of 2iσ . First, the expectations of 

the variance estimators are compared with each 
other and with GDVar[ ]X . Based on limited 

simulations, the traditional variance estimator 
�

GDVar[ ]X  underestimates the variance of GDX  

from 52-70 % when 5in =  and 18 to 24 % when 

15in = . The estimator � 2 GDVar [ ]X  has smaller 

biases than those for  � 1 GDVar [ ]X while � 1 GDVar [ ]X  

has a simpler form than that of � 2 GDVar [ ]X . 
Further we used simulations to compare the mean 
square errors of the four estimators of the variance 

of GDX . The mean square error of � GDVar[ ]X  is 

defined as 
 

           � 2
GD GDMSE [Var( ) Var( )] .E X X= −  

 
The mean square errors for other variance 
estimators are defined in the same way. Minimum 
MSE  was used as another criterion to compare the 
estimators. The results show that for the same 
variance structures and the sample sizes when 

8k > , � 2 GDVar [ ]X  has the smallest MSE’s while 

the traditional variance estimator, � GDVar[ ]X , has 

the largest MSE’s for all the cases. When 8k ≤ , 
�

1 GDVar [ ]X  has the smallest MSE’s. Finally, we 

used simulation to compare the coverage 
probability of the intervals formed by the four 
estimators of the variance of the weighted mean 

estimator. Specifically, for � GDVar[ ]X  and a 

coverage factor of 2, the 2σ  interval is defined as 
 

                            �
GD GD2 Var[ ].X X±                                                              

 

The coverage rate of this interval is the rate that the 
random interval covers the common mean µ . The 

coverage rate is an estimate of the probability with 
which the mean µ  is covered by the specified 

random interval. The other intervals are formed 
similarly. Using the coverage rate as the third 
criterion, with 5in = , it can be conclude that 

�
1 GDVar [ ]X  and � 2 GDVar [ ]X  perform better than the 

traditional variance estimator, � GDVar[ ]X . In 

addition, we found that when the number k  
increases, the coverage rate decreases for all the 
estimators. We also observed that when in ’s are 

large enough such as 15, the coverage rates for all 
variance estimators are at least 0.92 for 2σ  
intervals and 0.987 for 3σ  intervals. However, the 

intervals formed by � GDVar[ ]X  always have the 

smallest coverage rates and the intervals formed by 
�

2 GDVar [ ]X  always have the largest coverage rates.  

 
   In summary, the simulations show that based on 

all three criterions � 1 GDVar [ ]X  and � 2 GDVar [ ]X  are 

better estimators than the traditional variance 

estimator. Between � 1 GDVar [ ]X  and � 2 GDVar [ ]X , 

the first one is computationally simpler than the 
second. On the other hand, the second one has 
smaller bias and larger coverage probability than 
that of the first one while the MSE’s for these two 
estimators are comparable. In many cases, the 

biases for � 2 GDVar [ ]X  are positive, which is good 

in a conservative sense.  
 
 
4. THE CASE WITH BOTH TYPE  A AND 
TYPE B UNCERTAINTIES 
 
    Until now we consider the case that the 
uncertainties of { }ijX in (1) only consist of Type A 

uncertainties. The weighted mean and its 
uncertainty estimator were proposed in [2] for the 
case that both Type A and Type B uncertainty 
components presented. In this section, we will 
discuss the property of the uncertainty estimator in 
the presence of Type B uncertainties as well as the 
corresponding uncertainty estimators proposed in 
the previous sections. In parallel to the model in 
Section 1, we consider the situation in which the 
uncertainty of { }ijX  or { }ijε  include both Type A 

and Type B uncertainties. As in [5] and [6], when 
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Type B uncertainties presented we assume that ijX  

can be expressed as 
 
                , ,ij ij A i BX X X= + ,                               (15) 

 
where random variables, ,ij AX  and ,i BX  are 

statistically independent from each other, and their 
corresponding standard deviations or uncertainties 
are ,i Aσ  and ,i Bσ . The component ,i Aσ  is the Type 

A uncertainty for the thi  set of random variables 

and ,i Bσ  is the Type B uncertainty for the same set 

of random variables. Thus,  
 
                    2 2
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The sample means are thus 
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For the weighted mean, wX  defined in (2), the 

weights in (4) now become (using the same 
notation) 
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Similar to (7)  
 

2 2
1 , ,

1
Var[ ] .

1
'

w k

i i A i B

X

σ σ=

=

+∑
                                (19) 

 
Although ,{ }ij AX  are not observable, based on 

{ , 1,..., ; 1,..., }ij iX i k j n= = , 2
,i Aσ  is estimated by 

the sample variance, 
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Assume that 2

,i Bu  is an unbiased estimator of 2,i Bσ , 

i.e. 2 2
, ,[ ]i B i BE u σ= . The uncertainty of the iX  is 

estimated by 
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where 2 2' /i i iS S n= . Thus, the weights 

corresponding to (5) are given by (using the same 
notation) 
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Then the weighted mean, GDX  corresponding to 

(6) is obtained. Now we consider the estimators of 
the uncertainty of GDX . Similar to (9), the 

following inequality holds,  
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The proof is given in [3]. Similar to (10), an 
estimator of variance of GDX  is given by 
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Similar to (9), we can show that  
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Thus, the estimator underestimates the variance of 

wX  and also the variance of GDX . The proof can 

be found in [3]. In parallel to (11) we have: 
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Since 2 2

, ,[ ]i B i BE u σ=  by the first order 

approximation 
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Thus, from (26) and (27) 
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From (28) 
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Based on that, similar to (11) an alternative 
estimator of the uncertainty of the weighted mean 
is given by  
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It is clear that when 3in > , 
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From (31) � 1 GDVar [ ]X  has a smaller bias than that 

for � GDVar[ ]X . Similar to (13), a second estimator 

of the uncertainty of the weighted mean is given by 
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where (using the same notation)  
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Since the factor 
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 in (32) is larger 

than 1, � �
2 1GD GDVar [ ] Var [ ]X X> . It is clear that 

when both Type A and Type B uncertainties 
present, the proposed uncertainty estimators of the 
weighted mean has the benefit to reduce the bias. 
However, the improvement due to the proposed 
uncertainty estimators depends on the ratio 
between ' jS  and ,j Bu  for all sets. When a Type B 

uncertainty component is equal to or larger than the 
corresponding Type A uncertainty component, the 

improvement due to � 1 GDVar ( )X  is not as much as 

in the case when only Type A uncertainties exist.   
 
 

       5. CONCLUSIONS 
 

   The Graybill-Deal estimator or the weighted 
mean has been widely used to estimate the 
common mean from several sets of measurements, 
especially in key comparison studies recently. The 
widely used traditional variance estimator of the 
weighted mean estimator underestimates the 
variance and has large mean square errors and the 
intervals formed by this estimator have poor 
coverage probability for the mean, especially when 
the number of sets is large and the sample sizes are 
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small. We have proposed two new estimators of the 
variance of the weighted mean when sample sizes 
are larger than 3. They have smaller biases, smaller 
MSE’s in general, and the correspondingly formed 
intervals have much better coverage probabilities 
than those of the traditional variance estimator of 
the weighted mean. Overall, the second proposed 
estimator performs best. The results have been 
extended to the general case when both Type A and 
Type B uncertainty components are presented. 
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