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Abstract: This paper presents a specific implementation 
suite and some background for combining uncertainty 
components, and using them, through the propagation of 
distributions using Monte Carlo simulation. 
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1.   UNCERTAINTY BUDGETS AND MONTE CARLO 

The ISO Guide to the Expression of Uncertainty in 
Measurement [1] proposes Monte Carlo simulation as a 
technique for combining uncertainties when simpler 
methods may not apply. Monte Carlo simulation as the 
reference technique is presented in some detail in its 
Supplement 1, which has been circulated widely, starting 
with its draft form in 2004 [2].  

 
In this paper we demonstrate the simplicity that may be 

obtained by adopting Monte Carlo techniques for GUM-
compliant combination of standard uncertainties.  We 
discuss what additional information needs to be presented so 
that anyone – from neophyte to professional statistician – 
can have confidence in the results of a Monte Carlo 
simulation as a proper representation of the consequences of 
the claimed uncertainty components.  

 
2.   END USES FOR UNCERTAINTY BUDGETS 
 

Universally, the underlying purpose for statements of 
uncertainty is to guide decisions involving the measurand. 
The metrologist’s uncertainties are propagated through one 
or more traceability chains to arrive at the decision, which 
conventionally is based on a designer’s tolerance interval. 
When we recall that the designer’s experience is also based 
on measurements, it is easy to appreciate that the weakest 
part of the overall chain (relating a metrologist’s result to a 
designer’s measurement-based experience) may well be the 
conventional tolerance interval. More sophisticated 
designers might express past experience as a “cost function” 
rather than as a uniform tolerance interval, and want access 
to all details of the metrologists’ uncertainty distribution. 
Monte Carlo simulation, applied to uncertainty analysis, can 

support these more sophisticated approaches that express 
more detail about a designer’s requirements. 

For coupling to a designer’s cost function that embodies 
commercial experience (likely proprietary), the uncertainty 
may be best captured by an uncertainty budget as expressed 
in a Monte Carlo model that accompanies the measurement. 
Other ways of providing this information are also possible: 
as moments of the as-simulated distribution or as a 
histogram representing the as-simulated distribution. The 
uncertainty budget, expressed as a Monte Carlo model, has a 
clarity that greatly simplifies the proper identification and 
treatment of effects that are fully covariant between the 
measurement and the measurements that contributed to the 
designer’s experience. 

Usually, the role for Monte Carlo simulation is in 
support of treating uncertainties using techniques such as the 
“law of propagation of uncertainty” (LOPU) [1, Clause 
5.1.2]. This support is important when the validity is not 
self-evident for linearized approximation of the 
measurement equation, or the Gaussian approximation of 
uncertainty distributions associated with particular causes, 
or of the Welch-Satterthwaite approximation. 

When there is a consensus about the general target 
accuracy for the treatment of uncertainties, Monte Carlo 
simulation can be the easiest approach to validating these 
approximations for the specific case under consideration. 
For example, in high-level metrology, the authors are 
unaware of any application requiring uncertainties in 
measurement to be determined to better than 10%, and at 
these levels, the demonstration by Monte Carlo simulation 
of the adequacy of the GUM’s approximations can be very 
straightforward. 

In any case, the end use of the measurement and its 
uncertainty can provide invaluable guidance about the 
appropriate use of advanced techniques such as Monte Carlo 
simulation. 
 
3.  UNCERTAINTY CLAIMS AS PREDICTIONS 
 

For measurement science to sustain the confidence of the 
physical sciences and engineering, we must be seen to be 
using the scientific method: comparing prediction with 



experiment. Although there are many ways of doing this, the 
closest fit to any full chain of metrological inference is 
found by comparing pairs of measurements that have been 
made on nominally identical measurands.  

 
In this essential test, the uncertainty budgets for the pair 

are treated as the definitive claim about nominal identity and 
on which the probabilistic prediction is based, with the 
measured results as the definitive experimental results. The 
method for combining uncertainty components is not 
constrained (LOPU, LOPU with the Welch-Satterthwaite 
approximation, Monte Carlo simulation, probability 
calculus…) nor is the school of statistics (frequentist, 
marginal likelihood, Bayesian, fiducial …) used to help one 
arrive at the standard uncertainty for the pair difference. The 
chosen method’s standard uncertainty, of the pair difference, 
serves as the definitive parameterized prediction. 

 
We see advantages in giving a specific name to the ratio: 

the difference between one measured result x and another 
result xr (often xr would be a reference result), (x-xr), divided 
by the standard uncertainty of that difference, u(x-xr). 

 
(x-xr) / u(x-xr) 
 

At first glance, this ratio may appear deceptively 
familiar, particularly to non-metrologists. We have proposed 
[3] naming this quantity “the metrologist’s ratio” to help 
distinguish it from its close relatives. 

 
In defining the uncertainty scale factor, the GUM-

compliant usage of the “standard uncertainty” places some 
specific constraints on the more general concepts of 
normalized error, En; or of the Z-score. For GUM 
compliance, neither of these are sufficiently specific terms: 
En is often applied with an expanded uncertainty in place of 
the standard uncertainty, and there are other meanings to the 
term Z-score. 

 
Furthermore, the ISO GUM specifies the standard 

uncertainty to be one of two different things: either the 
standard deviation of the predicted distribution, OR (if a 
degrees of freedom parameter is specified) as the 
experimental standard deviation associated with the scaled 
and shifted Student-t distribution with the specified degrees 
of freedom, ν. For ν>2, the square of the GUM’s standard 
uncertainty is smaller than the variance of the Student-t 
distribution by the factor (ν-2)/ν. In the context of pair 
differences, the combined standard uncertainty is specified 
even more tightly by the ISO Guide – as the combined 
uncertainty with its effective degrees of freedom calculated 
using the Welch-Satterthwaite approximation for the 
linearized measurement equation. The “metrologist’s ratio” 
comfortably encompasses all these subtleties in a way that a 
more general term cannot. 

 
The metrologist’s ratio is a straightforward statistic for 

comparing measured with claimed agreement. With a 
probabilistic analysis of the ratio (or aggregates of multiple 
instances of this kind of ratio) using the uncertainty claims, 

we can test the null hypothesis (of agreement of the means) 
and the measurement equation (of the difference, usually 
assembled as the difference of the two measurement 
equations). Monte Carlo simulation is an excellent tool for 
doing this, since for this test we want to use all information 
available in the uncertainty budgets to understand the 
significance of the measured differences relative to the full 
uncertainty claims. 

 
Demonstrating the scientific method in this way should 

circumvent all of the controversies that can arise about the 
meaning of what is being simulated: here the claimed 
randomness is being tested, along with the null hypothesis 
(of agreement), relative to the experimental measurements 
that are available. The bitter experience of those charged 
with teaching statistics is that simulations can be misapplied, 
and initial skepticism is to be expected particularly from any 
statisticians who are unaccustomed to seeing statistics as 
part of what is being judged by experiment. We see the 
statistical prediction of a standard uncertainty as no less 
subject to experimental validation than would be the 
probabilistic predictions from quantum mechanics. Notice 
that we are always simulating the claimed uncertainties, and 
never need to try to simulate the unavailable “true” 
distributions associated with the uncertainties. 

 
Some, but not all, established pseudo-random number 

generators have all the desirable properties for uncertainty 
evaluation. In order to quantify improbable eventualities, 
there are fairly stringent requirements on how the parent 
uniform generator creates pseudo-random numbers near 0 
and near 1, since these are used for creating the tails to the 
left and to the right of the resampled pseudo-measurements. 
Not all parent uniform generators treat these alike, and this 
needs to be tested and fixed if there is an asymmetry evident 
at the dynamic range that will be used in the evaluation of 
uncertainties. To exploit Monte Carlo simulation for 
uncertainty evaluation, we will need to develop and 
communicate a confidence in the pseudo-random number 
generators and models that are used.  
 
4.  GRAPHING FOR CONFIDENCE 
 

 We illustrate the power of data display in a histogram 
format to help achieve this confidence. Recall that the model 
equation of the measurement assigns a value to the output 
quantity based on a set of values of the input quantities.  For 
each uncertainty component of an input quantity, the 
histogram of the simulation’s re-sampling can be compared 
with the analytic curve claimed for the probability density 
function of this component. The output quantity’s 
histogram, as determined for each resampling by the model 
equation, can also be usefully compared with analytic 
approximate forms. 

 
In Figure 1 we show the graph of an analytic Gaussian or 

normal distribution (recall that the logarithmic graph of a 
Gaussian is a parabola opening downwards), along with 
histograms derived from the Box-Muller algorithm [6] 
operating on 2x1010 events from two different parent 



uniform generators: one (in grey) is for the Hill-Wichmann 
generator [7] with a dynamic range of about 15 bits, and the 
other is for the RANLUX64 generator, with excellent 
theoretical properties [8] with a dynamic range of 48 bits. 
Figure 1 shows that, for the context of the Box-Muller 
method, the dynamic ranges for simulating a Gaussian are 
easily appreciated as being almost 105 and at least about 108.   

Figure 1. Histograms comparing 2x1010 simulated events of 
a standard normal or Gaussian, implemented by the Box-
Muller algorithm from two different parent uniform 
generators: the Hill-Wichmann generator (grey) and the 
RANLUX64 generator (black). The analytic Gaussian curve 
is indicated by the pale grey hairline.  

Graphs such as those in Figure 1 can convincingly 
communicate how well the pseudo-random generator can 
recapture the analytic claim that is typically made in an 
uncertainty budget. The correlation characteristics of current 
pseudo-random generators are usually more than adequate to 
represent the claimed independence of resampled 
uncertainty components from the different uncertainty 
budgets under consideration.  

5.   MEASUREMENT VERSUS MEASURAND 

Simulations can easily deal with skewed distributions as 
well as the more usual symmetric ones. If asymmetric 
uncertainty distributions are being used, additional 
precautions are necessary. Care is needed to assign the 
correct sign of skewness to the uncertainty distribution of 
the measurand, which is reversed in sign from the skewness 
of a distribution of measurements [4]. These precautions are 
not fundamentally different than those needed for applying a 
static correction with the correct sign: if some physical 
cause increases a measured value, then the measurand value 
(corrected for this effect) must be below the uncorrected 
measured value and the absolute value of the correction 

must be subtracted. There are simple rules for simulations 
involving skewed distributions, with even simpler rules for 
dealing with symmetric distributions: 
 
1) Collect the information about the input quantities’ 

distributions, noting carefully whether they are 
asymmetric. 
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2) For asymmetric distributions, carefully determine 
whether the distribution is GUM-compliant, describing 
where the measurand is expected to be (with respect to the 
reported value) or if the distribution is describing where 
repeat measurements are expected to be (with respect to 
the reported value). 

3)  Do not alter asymmetric measurement distributions, but 
resample from these directly. 

4) By reflection [4] in the reported value, convert 
asymmetric measurand distributions into the measurement 
distributions of the correct skewness, and resample these 
by Monte Carlo simulation, feeding the results of each 
simulated input quantity into the measurement equation to 
obtain the resampled output quantity (note that the 
measurement equation itself may have skewness-altering 
properties). 

5) Repeat the resampling to create a histogram of the 
output quantity as a measurement distribution. 

6) Decide on the value that would be reported to represent 
this distribution (this may well be the mean, but it is to be 
the value that you would report) 

7) Reflect this histogram of the resampled output quantity 
in this value to obtain the GUM-compliant distribution, 
describing where the output quantity measurand is 
expected to be (with respect to the reported value). 

This straightforward change of variable can be used to 
transform between the two types of probability distribution 
functions (PDFs) used in metrology: the PDF of the 
measurand and the PDF of the measurement results. In 
assembling asymmetric PDFs, these transformations can 
help keep the symmetry of each distribution properly 
aligned, even for asymmetry that is merely caused by 
uncorrected biases. This simulation may be done to quantify 
the effects of asymmetry on the final PDF and its coverage 
intervals, which may often be used as a justification for 
ignoring the asymmetry. 

6.   MONTE CARLO IN EXCEL 

We provide a ‘toolkit’ for performing the basic Monte 
Carlo [9, 10] techniques proposed in Supplement One [2], 
using Visual Basic for Applications, the built-in 
programming language that is supplied with the Microsoft 
Excel spreadsheet program. This Excel toolkit is useable and 
modifiable on an extremely large installed base of 
computers. It is fully open source and is supported by 
extensive comments, presentations and papers; with user 
instruction and training materials available on its website 
[9]. This means that the Monte Carlo resampling of an 
uncertainty budget can be passed on and used in subsequent 
steps of the chains on metrological inference. This can be 
helpful to end users who wish to do their own cost function 



calculations, or who want to use their own measurement 
equations and quantify the adequacy of simpler methods as 
applied to their own purposes. 

The toolkit includes easy-to-understand functions for 
generating pseudorandom numbers distributed uniformly, or 
transformed as Gaussian or Student deviates as are 
commonly required in uncertainty evaluation. Emphasis is 
placed on comprehensibility over speed, since code 
validation and confidence in the propagated distribution 
method are paramount at this early stage of adoption. 
Although it should be rarely needed for speed of execution, 
the use of C language programs for macros in this Excel 
toolkit is also illustrated in some detail. Worked examples 
are used in the supporting documentation [9] to illustrate the 
impact of some of the approximations implicit in the GUM 
approach. 

7.   NULL HYPOTHESIS TESTING 

Monte Carlo simulation is moving on to new roles as it 
is being broadly accepted as a reference method for 
propagating uncertainty claims.  Probabilistic tests of the 
null hypothesis, based on the use of chi-squared-like 
statistics, aggregating the square of the “metrologist’s ratio” 
discussed above, are enabled by simulation in the context of 
extended tests. These fundamental tests for metrological 
agreement within claimed uncertainties can be performed 
either as mediated tests using either an externally-supplied 
reference value, or a peer-determined reference value [11], 
or unmediated tests [12] using unmediated bilateral 
comparisons, with maximum re-use of the peer data, to 
exactly emulate the simplest practical use for the 
comparison data. 

These new methods can test the consistency of the 
claimed uncertainties using a group of experimental values 
of one or more putatively invariant measurands. The Monte 
Carlo simulation can evaluate the probabilistic 
consequences of the randomness associated with the claimed 
uncertainties, and for a wide variety of circumstances it can 
provide a better estimate of the probability (of the claims 
exceeding the value of the experiment’s statistic) than would 
be available from tabulated value of the chi-squared statistic. 
For many interesting cases, there are significant departures 
from the analytic chi-squared function in the sense that the 
use of an analytic chi-squared function would often 
misidentify a group of measurements as being inconsistent. 

These new methods are aimed at transmitting confidence 
in the consistency of groups of measurements, and the 
familiarity of the chi-squared, or RMS En (a norm [5]) will 
provide a prepared audience for statistical measures 
employing them. Their formal statistical efficiency remains 
to be studied by those interested in these aspects of statistics, 
but discussions of the formal statistical efficiency need to be 
tempered with a discussion of the metrological efficiency 
for broadly communicating confidence in consistency. For 
“metrological efficiency”, we believe that familiarity is 
more important than the formal “statistical efficiency”.  
Monte Carlo simulation can, of course, support unfamiliar 
statistics as well as chi-squared-like statistics, but at present 
we think it best to use the most familiar statistics.  
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