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Abstract: This paper considers the determination of 
measurement results and associated uncertainties when prior 
physical knowledge of the quantities concerned is available. 
The scientific concepts that provide a basis for determining 
realistic solutions to such problems are discussed, and 
implementations of these concepts are considered. To 
illustrate the concepts, an example concerning the 
determination of an analyte concentration in chemical 
metrology is used. This will be the basis for a discussion 
concerning the various approaches available to deal with 
such constraints. Results stating a coverage interval 
containing infeasible values (values the quantity cannot 
physically take) should be avoided, and this fact will assist 
in the comparison of the relative merits of each method. 
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1.   INTRODUCTION 

This paper is concerned with the need to ensure that the 
results of measurement conform with physical knowledge, 
e.g., that an estimate of a chemical concentration lies in the 
range zero to 100 %, and that a coverage interval determined 
for the concentration contains only values in that range. 

It might not be possible, when using a conventional 
method for solving such a problem, to guarantee feasibility 
of the solution. For instance, an application of the GUM 
uncertainty framework [1] might provide 99.70 % as an 
estimate of a concentration and 0.25 % as the associated 
standard uncertainty. If the quantity concerned were 
characterized by a Gaussian distribution, the expanded 
uncertainty corresponding to a 95 % coverage probability 
would be 2 × 0.25 % = 0.50 %, and hence a 95 % coverage 
interval for the concentration would be (99.70 ± 0.50) %. 
Since the part of this interval that exceeds 100 % is 
infeasible, it is difficult to interpret this result in a 
meaningful way for an application. A correctly computed 
coverage interval would have an upper limit no greater than 
100 %. Such an interval cannot be based on an underlying 
assumption of normality in this instance. 

This paper considers the use of all available information 
to assign appropriate prior probability distributions to the 
input quantities in a model of measurement and possibly a 
prior distribution to the model output quantity (the 
measurand). If this information correctly characterizes the 

physical knowledge of the quantities concerned, the 
posterior distribution for the measurand will embrace 
feasible values only, with the consequence that an estimate 
of the measurand and a coverage interval for the measurand 
will be meaningful for any required coverage probability. 

2.   APPROACH 

Appropriate functional and probabilistic modelling can 
be used to encode available physical knowledge within a 
model of a measurement and within the probability density 
functions (PDFs) for the model input quantities. 
Additionally, a Bayesian treatment can be used to account 
for prior knowledge of the measurand. Solution of the model 
then provides a posterior PDF for the measurand that relates 
to measurand values that are feasible in terms of that 
knowledge. 

Several approaches can be used to provide an estimate of 
the measurand and the associated uncertainty, and a 
coverage interval for the measurand for a prescribed 
coverage probability. The approaches include: 

 
1. Principle of maximum entropy, in which a unique PDF 

for the measurand is selected from among all PDFs 
having specified properties, e.g., specified expectation 
and standard deviation and specified intervals for 
which the PDF is non-zero [2]. 

2. Bayesian treatment, in which a probabilistic model for 
the measurement, expressed as a likelihood function, is 
used to update prior information about the measurand, 
expressed as a prior PDF, to provide a posterior PDF. 
In some cases the posterior PDF can be obtained 
analytically. Otherwise, numerical approaches, such as 
Monte Carlo Markov chain methods [3], can be used.  

3. Propagation of distributions, in which a functional 
model is used to relate the measurand to model input 
quantities about which information is available, and as 
the basis of obtaining the PDF for the measurand from 
the PDFs assigned to the input quantities. In some cases 
the PDF for the measurand can be obtained 
analytically. Otherwise, approximate and numerical 
implementations of the propagation of distributions are 
available, such as the GUM uncertainty framework [1] 
and a Monte Carlo method [4]. 



 A solution obtained using the GUM uncertainty 
framework can, as stated, be infeasible, although sound 
solutions can be anticipated for many problems. Solutions 
obtained using the other approaches will be feasible. This 
paper indicates classes of problem for which the GUM 
uncertainty framework can be unsatisfactory, and therefore 
for which the other approaches can be considered.  

The approaches considered have a wide range of 
applicability, as the following three problems exemplify: 

 
1. Expansion coefficient determination in thermal 

metrology: the coefficient is estimated as the gradient 
of a straight line fitted to measured data. For the 
material concerned it is known a priori that the 
coefficient is positive, and therefore the gradient of the 
line should likewise be constrained to be positive. 

2. Slit width measurement in dimensional metrology: a 
narrow slit width is determined as the difference 
between two numerically close quantities X1 and X2, 
with X2 > X1, for which measurements are available. 

3. Analyte concentration determination in chemical 
metrology: the concentration of a trace element in a 
sample is obtained from a series of indications [5][6]. 

 
For illustration, problem 3 will be considered in more 

detail. The real analyte concentration takes values between 
zero and one. However, when some instruments are used to 
measure, in an unbiased way, a sample with no analyte 
present, about half the indicated values can be expected to 
be negative, and, when the concentration is very small, a 
proportion of the values can be expected to be negative.  

 2.1   Principle of maximum entropy 

The “entropy” (related to uncertainty in metrology 
applications) of a continuous distribution with PDF g(η) for 
a quantity Y is defined as 

 
 .d)(ln)(∫−= ηηη ggS  (1) 

 
The principle of maximum entropy (PME) is to select that 
function that gives maximum entropy subject to a set of 
constraints. For example, the PDF that maximizes S from 
among those PDFs with specified expectation and standard 
deviation is the PDF for the Gaussian distribution.  
 Suppose measurement of real analyte concentration 
delivers an estimate x with associated standard uncertainty 
u(x). In the application of PME, a PDF g(η) for real analyte 
concentration is sought that maximises S in expression (1) 
subject to the constraints 
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Lira [7] provides the general form of the maximum entropy 
PDF in this case, viz.,  
 
 ),exp()( 2

21 ηληλη += Ag  (3) 

with values for the parameters A, λ1 and λ2 to be determined 
from the equations (2). Since the equations are non-linear in 
the parameters, a numerical method is used to solve them. 
Initial estimates of the parameters are provided by choosing 
values that define g(η) to be the Gaussian PDF with 
expectation equal to x and standard deviation equal to u(x). 

2.2   Bayesian treatment 

Bayes’ theorem takes the form  
 

 )()|()|( ηηη gxlKxg = , (4) 

 
where g(η) is a prior PDF for Y, )|( ηxl  is the likelihood 

function for the data x, )|( xg η  is the posterior PDF for Y, 

and K constitutes a normalization factor. In words, the 
degree of belief for a given value η of the measurand Y, 
expressed as the posterior PDF for Y given data x, is 
proportional to (a) the likelihood that η will produce the 
observed data x, and (b) the degree of belief attributed to η 
before the observation, the so-called prior PDF for Y, 
expressed as g(η) [8]. 

The posterior PDF may be used to provide summary 
information about the measurand Y, such as its expectation 
(mean) E(Y) and variance V(Y), defined by 

 
 ( ) ,)(EE)(V,d)|()(E 2YYYxgY −== ∫ ηηη  (5) 

 
and its most probable value (the mode). Although E(Y) is the 
minimum-variance estimator of Y, the mode M, say, may 
have other desirable properties. 

The prior distribution represents the information about 
values η available before the measurement x was taken, 
while the posterior represents an aggregation of the prior 
information and that supplied by the data. In “data-rich” 
experiments, the information supplied by the data is much 
more comprehensive that the prior information, so that the 
posterior is essentially proportional to the likelihood. In 
other circumstances, the prior distribution can contain 
information that the data cannot supply.  

Consider an observation x of real analyte concentration 
η, described by the model 

 

 ).,0(N~, 2σεεη +=x  (6) 

 
In the absence of any other information, the prior 
information about values η is represented by a rectangular 
distribution on the interval [0, 1]. In essence, the prior 
information excludes a value less than zero or greater than 
one. Given an observation x, the posterior distribution is 
given by kp(η), where p(η) is the PDF for the normal 
distribution N(x, σ2) restricted to the interval [0, 1], and k is 
a normalizing constant. The application of Bayes’ theorem 
in this case gives a truncated normal distribution. 

It is informative to ask whether this distribution solely 
represents the result of applying an algebraic identity or 
whether it indeed provides an adequate representation of the 
state of knowledge about the measurand. In fact, the 



distribution can also be assessed in frequentist terms. 
Imagine performing a large number of experiments for 
values ηi of real analyte concentration uniformly distributed 
between zero and one. For each value, make a single 
measurement  

 

 ),,0(N~, 2σεεη iiiix +=  (7) 

 
according to the model (6). For a given measurement result 
x and some small positive value δ, the set  
 
 { }],[: δδη +−∈ xxxii  (8) 

 
can be used to approximate the frequency with which a 
value η of the concentration leads to the measurement result 
x, i.e., the frequentist interpretation of the posterior 
distribution. 

Figures 1 and 2 show (as smooth curves) the posterior 
distributions for, respectively, measurement results x = 0.1 
and x = −0.1, with associated uncertainty u(x) = σ  = 0.2. 
The figures also show (as jagged curves) the frequency 
distributions calculated for each value of x and δ = 0.02 
using ten million experiment simulations. In both cases the 
results of the frequentist experiment agree with the posterior 
distribution. 

2.3   Propagation of distributions 

A functional model for the measurement is 
Y = max{X, 0}, where X is measured concentration and Y 
real analyte concentration [5][6]. The rationale for this 
model is that for a given value ξ of X the value η of Y is 
taken to be the closest value to ξ  that satisfies the constraint 
η ≥ 0. Suppose an estimate x of X with associated standard 
uncertainty u(x) is available. On the basis of this 
information, a Gaussian distribution with mean x and 
standard deviation u(x) is assigned to X [4]. (If x and u(x) are 
obtained from an analysis of a small number of repeated 
indications, assigning to X a scaled and shifted t-
distributions with finite degrees of freedom would be more 
appropriate [4]). The distribution for Y would resemble that 
for X for positive values of concentration, but with the 
fraction of those values that are negative concentrated at 
0 %. The coverage interval obtained from the distribution 
would then contain only feasible values. 

The GUM uncertainty framework provides an 
approximate implementation of the propagation of 
distributions. The approach is generally based on a 
linearization of the model Y = f(X) relating input quantities 
X to the measurand Y through a first-order Taylor series 
expansion. Cases exist where higher-order terms of the 
series are taken into account, but it is the simpler 
formulation that is most often applied. Whatever the 
functional model (an additive model is often assumed), the 
first order partial derivatives of f with respect to X, 
evaluated at the best estimates of X, are combined with the 
standard uncertainties associated with these estimates to 
determine the standard uncertainty u(y) associated with the 
measurement result y. Finally, the expanded uncertainty U 

and a coverage interval for Y are computed in terms of an 

effective degrees of freedom associated with u(y) and 
characterizing (Y – y)/u(y) by a t-distribution. 
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Figure 1 The posterior distribution and its frequentist interpretation for real 
analyte concentration for the observation x = 0.1 with associated 
uncertainty u(x ) = 0.2. 
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Figure 2 As figure 1, but for the observation x = −0.1. 

Consider a measurement x of analyte concentration close 
to zero and having an associated standard uncertainty u(x) of 
the same order of magnitude as x. The application of the 
above procedure is likely to yield a coverage interval for real 
analyte concentration that includes negative values, e.g., (1.0 
± 2.0) ppm or equivalently [–1.0, 3.0] ppm, which is 
difficult to interpret physically. Consequently, blind 
application of the GUM uncertainty framework should not 
be considered for such problems.  

In cases where the applicability of the GUM uncertainty 
framework is questionable, the use of a numerical 
implementation of the propagation of distributions may be 
considered [4]. Generally, a Monte Carlo method (MCM) 
can validly be applied in such situations, e.g., to models 
having strongly non-linear behaviour or an input PDF based 
on a small sample size. The approach performs repeated 
random sampling from the PDFs assigned to the input 
quantities and evaluation of the measurement model to give 
a discrete representation of the distribution for the 
measurand. Summary information about the measurand, 
including expectation, variance and a coverage interval for 



the measurand, are obtained from the discrete 
representation. 

3.   RESULTS 
 Suppose an estimate of measured concentration is 
x = 0.1. Consider three possible values for the associated 
standard uncertainty u(x), viz., 0.05, 0.1 and 0.2.  Figures 
3−5 show, for each case, the PDF for the Gaussian 
distribution with expectation x and standard deviation u(x). 
This PDF corresponds to the solution provided by an 
application of the GUM uncertainty framework (GUF). The 
figures also show the maximum entropy PDF constrained to 
be zero outside the interval [0, 1] and to have expectation x 
and standard deviation u(x). 
 The results indicate that when u(x) is small compared 
with the magnitude of x, the solution PDFs provided by the 
two approaches are similar (figure 3). However, when u(x) 
is comparable to the magnitude of x, the solution PDF 
provided by PME resembles one-half of a “U-shaped” 
distribution, and is very different in character from the 
Gaussian distribution provided by the GUM uncertainty 
framework (figure 4). For the largest value of u(x), the 
solution PDF provided by PME is unexpected, showing an 
increase in probability density in the neighbourhood of unity 
(figure 5). In all three cases, the solution PDF provided by 
PME incorporates the physical knowledge about real analyte 
concentration (that the quantity takes values in the interval 
[0, 1]), whereas the solution PDF provided by the GUM 
uncertainty framework does not. 
 Figures 6 shows, for the case x = 0.1 and u(x) = 0.2, the 
solution PDFs provided by a Bayesian treatment and an 
application of MCM as a numerical implementation of the 
propagation of distributions. The height of the left-most bin 
is in fact greater than 20 rather than as shown. For purposes 
of illustration, the chosen scale was used. 
 Figure 7 is the counterpart of figure 6 for the case 
x = −0.1 and u(x) = 0.2. This case, for which the estimate of 
measured concentration is negative, provides an example of 
a problem that cannot properly be treated using the GUM 
uncertainty framework. In the application of that framework 
to the model Y = max{X, 0} in this case, the sensitivity 
coefficient is calculated as zero and, consequently, 
irrespective of the value of u(x), the measurand is invalidly 
characterized by a distribution with zero standard 
uncertainty. The case also provides an example of a problem 
that cannot be treated by PME, because no PDF exists that is 
zero outside the interval [0, 1] and has an expectation that is 
less than zero (or greater than one). 

Finally, figure 8 shows, and compares, for the case 
x = 0.1 and u(x) = 0.1, the results obtained from three of the 
approaches considered. The solution PDF provided by the 
GUM uncertainty framework is shown as the Gaussian 
distribution (continuous curve), that provided by the 
Bayesian treatment as the dotted curve, and that provided by 
the Monte Carlo method as a scaled frequency distribution. 
For each distribution the endpoints of the (shortest) 95 % 
coverage interval are shown, as broken, dotted and 
continuous vertical lines, respectively. 
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Figure 3 Gaussian PDF from the use of the GUM uncertainty framework 
(GUF) and maximum entropy PDF (PME) corresponding to an estimate 
x = 0.1 and associated standard uncertainty u(x) = 0.05. 
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Figure 4 As figure 3, but for  u(x) = 0.1. 
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Figure 5 As figure 3, but for  u(x) = 0.2. 
 

4.   DISCUSSION 

The results presented are intended to stimulate 
discussion regarding the suitability of the approaches 
considered to the problem of measurement near a physical 
boundary. An apparently simply-stated problem can be far 
more complicated than anticipated. 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Measurand

P
ro

ba
bi

lit
y 

de
ns

ity

 
Figure 6 Solution PDFs obtained from a Bayesian treatment (continuous 
curve) and a Monte Carlo method (scaled frequency distribution) 
corresponding to an estimate x = 0.1 and associated standard uncertainty 
u(x) = 0.2. 

 
Figures 3−5 show clearly that the GUM uncertainty 

framework can be inadequate for such problems. A coverage 
interval provided by this approach can include negative 
values, which are physically infeasible. If that part of the 
PDF corresponding to negative values is simply discarded, 
then the area under the resulting PDF would be less than 
unity and an invalid solution would emerge. However, 
recent work [9] has advocated obtaining a feasible coverage 
interval from an infeasible coverage interval provided by the 
GUM uncertainty framework by truncating (in this case) the 
left-hand endpoint at zero. The estimate of the measurand 
and the associated standard uncertainty are retained. This 
approach has the advantage of being straightforward to 
implement, but a detailed comparison with the approaches 
considered here has yet to be undertaken. 

There are some advantages of the approach based on 
PME compared with the GUM uncertainty framework 
(figures 3−5). Firstly, the PDF for real analyte concentration 
provided by the approach is feasible, as will be summary 
information, such as coverage intervals, derived from the 
PDF. Secondly, both the estimate of measured analyte 
concentration and the associated standard uncertainty are 
preserved as the expectation and standard deviation of the 
solution PDF. 

On the other hand, a problem formulation based on 
PME, may not be well-posed. As noted before, the equations 
(2) do not permit a solution of the form (3) when the 
estimate x lies outside the interval [0, 1]. Lira [7] also notes 
that, for feasible values of x, there are values of u(x) for 
which the equations (2) do not permit a solution. It can be 
expected that for values of x and u(x) near these cases, PME 
yields problems that are ill-posed and, consequently, having 
solutions that might be difficult to obtain numerically. 

For certain problems, such as where x is close to a 
physical boundary and u(x) is large, the approach provides 
results that appear “unrealistic” (see the “U-shaped” 
distribution in figure 5). However, such problems may 
themselves be viewed as “unrealistic”, in the sense that the 
problem relates to a “poor” measurement of a quantity 
whose value is very small (or very large). 
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Figure 7 As figure 6, but for x = –0.1 and u(x) = 0.2. 
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Figure 8 Comparison of solution PDFs provided by the GUM uncertainty 
framework (continuous curve), Bayesian approach (dotted curve) and a 
Monte Carlo method (scaled frequency distribution), for the case x = 0.1 
and u(x) = 0.1. The corresponding (shortest) 95 % coverage intervals are 
also shown as broken, dotted and continuous vertical lines, respectively. 

 
Both the Bayesian approach to the problem and the use 

of a Monte Carlo method deliver solution PDFs that are 
feasible. Furthermore, unlike the GUM uncertainty 
framework and PME, neither the Bayesian approach nor the 
Monte Carlo method make an assumption about x or u(x), 
e.g., that x is itself feasible. 

The Bayesian approach and the Monte Carlo method 
treat the physical knowledge about the problem differently. 
In the Bayesian approach the knowledge is treated 
probabilistically. The prior PDF for real analyte 
concentration Y encapsulates the knowledge about Y 
independently of any measurement, and through the 
likelihood function a negative value of measured 
concentration may arise for a positive value of real analyte 
concentration with non-zero probability. In the use of a 
Monte Carlo method (and generally in the application of the 
propagation of distributions with the proposed functional 
model) the knowledge is treated functionally: real analyte 
concentration regarded as a quantity can never be negative, 
even though measured analyte concentration also regarded 
as a quantity can be positive or negative. 

The results obtained from the different approaches 
considered are compared in figure 4 and figure 8 for the case 



x = 0.1 and u(x) = 0.1. Table 1 shows the corresponding 
numerical values for the mean, mode and (shortest) 95 % 
coverage intervals, provided by each method. 

Table 1 Results for x = 0.1 and u(x) = 0.1. 
Approach Mean Mode Coverage interval 
PME 0.100 0 [0, 0.301] 

Bayesian 0.129 0.100 [0, 0.274] 
MCM 0.109 0.004 [0, 0.264] 
GUM 0.100 0.100 [–0.096, 0.296] 

 
The GUM uncertainty framework and PME are 

illustrated in figure 4, and compared in table 1: a coverage 
interval with negative values for GUM and a longer tail on 
the right-hand side for PME. Moreover, the latter preserves 
the mean, as expected, and has a mode equal to zero. 
Similarly, the comparison in figure 8 shows the coverage 
interval of the Bayesian approach to be slightly longer than 
that provided by MCM, and both shorter than the GUM 
coverage interval.  

The mode is preserved in the case of the Bayesian 
approach. Indeed, there is a case when applying the 
Bayesian treatment for using the mode of a quantity 
characterized by a PDF rather than the expectation as the 
estimate of the measurand. The reason is that the mode, the 
most probable value, is uninfluenced, when x ≥ 0, by the 
truncation of the PDF resulting from the prior used, which 
excludes negative values. When x < 0, the mode is at zero, 
the closest feasible value to x. 

4.   CONCLUSIONS 

The solution approaches considered are capable of 
treating functional or probabilistic models to the degree of 
approximation typically required in practice. However, the 
modelling itself constitutes a critical stage. The choice of 
model (our representation of reality) dictates the solution. 
For the analyte concentration example, the differences in the 
results obtained by the various methods might be 
appreciable. Similar remarks might apply in other 
circumstances. 

Metrology is not about using recipes, but rather [1] about 
understanding and critical analysis, and depends on detailed 
knowledge of the nature of the measurand and the 
measurement. Therefore, the purpose of this study is not to 
advocate the blind use of any particular approach, but to 
draw attention to a class of problems where one particular 
method can prove better suited in providing an adequate 
solution. 

This paper has raised issues relating to the feasibility of 
measurement results and the associated uncertainties, and 
coverage intervals for the measurands. Both functional and 
probabilistic modelling have roles to play in the 
determination of feasible solutions. Basic concepts were 
indicated, the propagation of distributions and Bayesian 
treatments being central to consideration. Implementations 
of the concepts were outlined and their application to 
chemical metrology considered. 
 Many problems in metrology can benefit from modelling 
that accounts for prior physical knowledge, and therefore 
future work will include (a) the treatment of small samples, 

using t-distributions accordingly, in the presence of 
constraints, (b) further comparisons of approaches such as 
PME, Bayesian and MCM, to help determine their 
applicability to various classes of problem and (c) further 
work on reliable numerical methods for the different 
approaches. 
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