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Abstract: A method for estimating an upper bound of the 
dynamic measurement error in the time domain is derived, 
starting from the transfer function of the system. Labeled 
response uncertainty, this dynamic error bound can be 
included in the conventional measurement uncertainty. A 
typical system for measuring force, pressure or acceleration 
is here evaluated using this measure. The linear dynamic 
error arises for two reasons: Varying amplification and 
delay with frequency. The latter is analogous to the well-
known bandwidth limiting dispersion of signals in 
transmission systems. For wide spectrum signals/pulses the 
asymptotic tails of the spectra may generate the major part 
of the error. No widespread robust, general and systematic 
method of quantifying the measurement error caused by 
these effects exists, despite that they may generate signal 
distortion far beyond the common prediction. 
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1.    INTRODUCTION 

Many measurement systems of today are statically 
calibrated with evaluation of the measurement uncertainty 
(MU) according to the GUM method [1]. When time-
dependent signals are measured, the non-perfect dynamic 
response of the system generates additional errors. Only if 
the response time of the system is much shorter than the 
time scale of signal variation, dynamic effects will be 
negligible. In contrast to static calibration, dynamic 
calibration yields a characterization but not generally an 
accurate prediction of the maximum measurement error in 
the time domain. This characterization is often made in the 
frequency domain in terms of the complex-valued transfer 
function of the measurement system [2-4]. 

 
The linear dynamic signal error is a consequence of the 

total complex-valued transfer function of the system and the 
entire spectra of measured signals. Often only the maximum 
variation of the transfer function amplitude over the signal 
bandwidth is considered when estimating this error. Signal 
dispersion [5] related to the non-linear variation of the phase 
of the transfer function with frequency is then not 
considered. Although most correction methods aim at taking 
this effect fully into account [6-9], to our knowledge there 
has been no attempt to include it in estimates of the dynamic 
error. Also, the spectra of pulses are never strictly 

bandwidth limited and extend to infinity, even if the decay 
may be rapid. Proper evaluation of all these effects requires 
an unbounded summation/integration over frequency of a 
complex-valued function, weighted with a typical signal 
spectrum. 

 
The present study proposes a method for finding a true 

upper bound of the linear dynamic error in the time domain, 
here denoted response uncertainty (RU). The transfer 
function is assumed known and can be obtained from a 
dynamic calibration, or by other means. All kinds of linear 
subsystems are allowed: Mechanical sensors for measuring 
pressure [2], force [3], or acceleration [4] as well as 
electrical and digital filters and amplifiers etc., are easily 
included in the analysis.   

2.    FORMULATION OF PROBLEM 

The dynamic error is here defined as the maximum 
deviation of the observed signal ( )ty  from a reference 
signal ( )ty0 , translated in time by a possible delay τ . The 
only difference between these signals is that all dynamic 
effects are removed from 0y . Related to 

( )( ) ( )( )tytyyM maxmax 0 ≈= , the error becomes a 

dimension-less function ε  of the inferred time delay, 
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Determination of the dynamic error requires knowledge of 
the time delay. From the transfer function it is not explicitly 
known. A generalized time delay between a given pair of 
signals can be defined using a correlation function 
technique. Alternatively, the delay can be obtained as the 
relative time translation minimizing the maximum signal 
difference. In simulations both methods can be used and 
compared. The latter method will be employed here since it 
directly addresses the dynamic error and gives the least error 
bound. In terms of the complex-valued frequency-dependent 
transfer function H , 
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Capital letters will be used for the Fourier and Laplace 
transforms. The transfer function at zero frequency, 

( ) RiHH /∈=≡ 00 ω , describes the linear response analyzed 

in static calibration, ( ) ( )txHty 00 = . Here, ( )tx  is the 
physical signal to be measured. For a linear phase system, 

RH /∈~δ . If also the amplitude ( )ωiH  is constant, 0
~ =Hδ , 

there is no dynamic error. 
 

The RU Dε  is an upper bound of the dynamic error ( )τε  
in (1), considering all occurring signals ( )tx  and minimizing 
over the delay τ , 
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where ( )( )txxM max= . In the limit of a narrow spectrum 

around Bωω = , ( ) ( )22
BMxX ωωπδω −≈ , a common error 

estimate results, 
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Even if not applicable, this is often used in practice, 
irrespective of the type of signal. The frequency Bω  is then 
chosen as the frequency component within the signal 
bandwidth that maximizes Dε . 

3.    RESPONSE UNCERTAINTY 

A general expression for the RU Dε  (section 3.1) is 
derived below. It depends on the product of bandwidth and 
duration of the signal (section 3.2). The asymptotic 
properties of the signal spectrum (section 3.3) and how it is 
modeled (section 3.4) are crucial aspects. In practice, the RU 
is preferably included in the MU (section 3.5).  

3.1.  General 

An upper bound of the integral Dε  in (3) is found by 
moving the absolute value into the integrand, 
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The bandwidth Bω  and the duration Bt  of the signal 
measure the width of the signal spectrum and the persistence 
of the signal, respectively. Their product γ  varies weakly 
with properties of the signal, 
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The frequency Bω  measures the signal bandwidth (in 
radians) similarly to commonly used bandwidths defined by 
the frequency at a given attenuation. The proposed 
bandwidth not only results in efficient and robust estimates 
of Dε , it is also easily determined for any signal spectrum. 
If the spectrum consists of several more or less separated 
parts, the conventional bandwidth defined by any given 
attenuation is clearly not a useful concept. 
 

Without any restriction on the signal, the dynamic error 
is truly unlimited. In each application, typical variations of 
the signal are usually approximately known. While an 
estimated rate of change is related to the distribution of the 
signal spectrum, the seldom known symmetry in time 
determines its phase. General statements can thus often only 
be made about the relative magnitude of the signal 
spectrum, as modeled by the normalized and real-valued 
spectral distribution function (SDF) B  defined in (5). 
Different SDFs will correspond to different types of 
measurements. For each combination of application ( )B  and 

system ( )H , it is possible to evaluate the dynamic 
performance. The SDF here plays a similar role for 
generating dynamic errors as the probability distribution 
function (PDF) does for creating stochastic fluctuations in 
random processes. Both distributions describe the 
underlying variation that drives the system. How much of 
these that propagate to the measured quantity depend on the 
governing differential (algebraic) equations for the dynamic 
(stochastic) system. The algebraic equation should 
according to GUM [1] be linearized, while the differential 
equation is assumed to be linear. Many aspects are thus 
comparable and the abbreviation is chosen to reflect the 
equivalent status of the two. 

 
For effective numerical calculation it is preferable to 

transform the improper integral of the weighted average in 
(5) to a bounded interval by changing variable, mapping 

{ }+∞= ,,0 Bωω  onto { }0,5.0,1=ψ , 
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The signal ( )txE  generating maximum error can be 
explicitly determined from the “worst” phase of the signal 
spectrum once the delay τ  is known, 
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The time invariance is reflected by the arbitrary time 0t . 

3.2.  Bandwidth-duration product 

From Fourier analysis methods [10] it is known that the 
value of the product γ  of the bandwidth Bω  and the 

duration Bt  varies little among different signals. Its value 
can be determined from the required harmonic limit (4) in 
conjunction with the integral (5) containing the transfer 
function variation, 

1=Hγ .                                     (9) 

This agrees with common estimates of bandwidth used 
in many engineering disciplines. Similarly, for both the 
Gaussian pulse ( )01 =ω  and burst ( )11 αω >> , 
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the bandwidth-duration product equals one. However, the 
expression (8) for the maximum error signal illustrates that 
γ  can be larger than unity. If the system exhibits linear 

phase and H
~δ  never change its sign the product Eγ  is 

equal to unity, otherwise it is larger, 
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The multi-component burst signal, 
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n
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also has a bandwidth-duration product Nγ  slightly larger 

than one ( )( )kjkjkj ≠>>− ,,min ααωω , 
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The numerical value here depends on how well the 
harmonic components can be aligned. Reflecting the 
discussion above against the expected over-all accuracy, it 
nevertheless appears satisfactory to set 1≈γ  for all signals. 

3.3.  Asymptotic behavior 

Physical measurement systems have a finite bandwidth, 

( ) +∞→</∈−→ ωωδ ,0
~
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The error transfer function ( )ωδ iH
~

 is neither integrable 

over ( )∞∞− , , nor has a finite representation in time. A 
finite dynamic error thus requires a signal spectrum/SDF 

decaying to zero at infinity. An abrupt cut-off of the signal 
spectrum would however necessarily result in oscillations in 
the time domain. A finite asymptotic slope of the SDF is 
thus very important for correct modeling of real signals. 
 

For studying convergence properties the RU is 
conveniently rewritten ( D  and BC ω>>  constants), 
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If the SDF is of first order with a dB/octave6  fall-off, 
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which diverges logarithmically. The divergence is quite 
slow implying that higher order SDFs B  result in 
convergent integrals. The proposed calculation thus requires 
an asymptotic slope strictly exceeding first order 
( dB/octave6 ). The mentioned bandwidth limitation of 
physical signals required to give finite dynamic errors in fact 
also makes them absolutely integrable. Then for n  times 
differentiable signals, 
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The minimum integer is 2=α  for 0=n . The default slope 
for at least continuous signals is thus dB/octave12 . The 
asymptotic properties of the SDF are primarily set by the 
regularity/ differentiability of the signals to be measured. 

3.4.  Determining the spectral distribution function 

Finding a relevant SDF for calculating the RU is 
equivalent to determine the PDF for estimating the static 
MU. In the latter case, the selection is often based on the 
central limit theorem [10] while in the former there does not 
exist any equivalent theorem. Instead, it is the type of signal 
to be measured that determines the SDF: For pulses it will 
resemble the magnitude of low-pass filter transfer functions, 
for slowly varying harmonic signals it is bell-shaped and for 
periodic signals it may be a superposition of several such 
envelopes, etc.. Each application will have its own SDF and 
it is very important to state which has been used for 
evaluation. A basic assumption of the method is that the 
practitioner knows the application well enough to select a 
proper SDF. 

 
Measured [output] signals are often accurate enough for 

estimating the unknown [input] SDF when the dynamic 
error is small. To show that a small error in the time signals 
corresponds to an equivalently small error in the frequency 
domain, Parseval’s theorem can be utilized, 
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A deviation between the input and output time signals of 
order Dε  leads to a similarly sized mean error between their 

frequency transforms. The unknown SDF for ( )ωX  can 

then be approximated with the SDF for ( )ωY . The latter can 
be estimated from repeated measurements using the 
measurement system to be evaluated. Special attention must 
then be paid to how the system may change the asymptotic 
properties (section 3.3) of the SDF. 

3.5   Total uncertainty 

The RU Dε  can be included in a total uncertainty 
describing an upper bound of all linear measurement errors. 
The static sensitivity corresponds to the zero frequency limit 
of the transfer function while the variation of the transfer 
function with frequency sets an upper bound of the dynamic 
error. De-composing the transfer function into “static” and 
“dynamic” factors, its variation can be written as, 
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An upper bound of the total uncertainty is obtained by first 
completing the expression so that the last term equals the 
response uncertainty. Then averaging and using the triangle 
inequality, 

DS εεε +=Σ .                              (20) 

The RU Dε  thus adds linearly with the MU Sε  to the total 

uncertainty Σε . The quadratic sum rule based on stochastic 
uncorrelated error contributions, does not apply here. The 
uncertainty Sε  is to be determined according to GUM [1] 
for the chosen confidence level, exactly as in the 
corresponding static calibration. Since the RU is an absolute 
upper bound of the error, the total uncertainty inherits at 
least the confidence level of the static uncertainty. Formally, 
the RU can be accommodated in the uncertainty budget as 
an uncorrected deterministic type B contribution as 
described in section F.2.4.5 of [1]. 

4.    TRANSDUCER EXAMPLE 

Force and pressure transducers as well as accelerometers 
are usually [2-4] modeled as simple resonance systems, 
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The resonance frequency 0pC =ω  sets the time scale. The 

dynamic performance of transducers can often be poor due 
to very low relative damping, ( ) 00 /Re pp−=ζ . The 

transducer may be compared to similar dynamic systems 
having an equivalently defined damping. Electrical filters 
are often named according to their damping: Second order 
Bessel and Butterworth filters have the damping 87.0=ζ  
and 71.0=ζ , respectively. In loudspeaker design [11] the 
group delay/phase characteristics of the system are very 
important to control in order to minimize waveform 
distortion. The damping can be tuned and is often chosen in 

the range 14.0 ≤≤ ζ . For instance, there exists a low 
damping “Boom-box design” which gives higher priority to 
constant amplification than linearity of phase. Correct levels 
of narrow spectra “tones” are then considered more 
important than accurate reproduction of pulses. This can be 
directly interpreted in the language introduced here: The 
SDF should be chosen as a localized function around the 
frequency of the tone rather than a low-pass filter for 
evaluating the pulse distortion. The expected duration of the 
tone sets the width of the SDF. 
 

The generally very low damping of transducers (often 
1.0<<ζ ) is difficult to improve by physical means and 

may result in “ringing” effects [12-13] more severe than in 
any of the other mentioned examples. Some kind of 
correction filter CH  modifying the system transfer 

function, CTT HHH ⋅→ , is therefore often required to 
reduce the measurement error. If no details about the 
transducer are known, conventional low-pass filters is a 
simple option. It is of course much more flexible, effective 
and accurate to apply a dedicated optimized [9] digital filter 
[14] on measured signals. 

 
To analyze the transducer system with conventional low-

pass correction filters, first select an SDF. Here assume that 
pulse measurements are of interest. Two different input 
signals will be simulated [15] to verify the RU: A quite 
irregular (only continuous) simple symmetric saw pulse and 
a very regular (infinitely differentiable) Gaussian pulse. The 
spectrum of the former is rather well described by the 
magnitude of a low-pass Bessel filter of second order, which 
is hence chosen as the SDF. The dynamic error of the latter 
signal is then expected to be much smaller than the RU due 
to its much higher regularity. The correction filter should be 
selected in accordance with the application, that is, the SDF. 
Measuring pulses an almost linear phase Bessel filter is a 
good choice. The order will more or less arbitrarily be 
chosen equal four, high enough to give sufficient high 
frequency damping but low enough for simple 
implementation and smooth roll-off to minimize filter 
distortion. With fixed order and type of the correction filter, 
the RU can be calculated for different filter cut-off 
frequencies 0ω  (see ε  in Fig. 1.). 
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Fig. 1.  The response uncertainty ε  and time delay τ  as function of 
bandwidth of a corrected transducer with relative damping 02.0=ζ , 
for different values of the cut-off frequency 0ω  of the fourth order 
Bessel correction filter. 
 

Lowering 0ω  will increase the delay of the 
measurement system. Often there is a trade-off between 
measurement accuracy and response time/delay, as can be 
seen in Fig. 1. Simulating measurements of the saw and 
Gaussian pulses for Cωω 75.00 = , the RU can be verified 
(Fig. 2.). 
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Fig. 2. The response uncertianty (full) as function of bandwidth of a 
corrected (fourth order Bessel, Cωω 75.00 = ) transducer with relative 
damping 02.0=ζ , compared to various approximations and 
simulations. 

 
The difference between the common error estimate Dµ  

(broken) and the RU for the linearized phase system (dotted) 
is the inclusion of the asymptotic tails of the SDF. The RU 
(full) of the actual system with the non-linear phase, is here 
only slightly larger. Thus for this system, the dispersion is 
low compared to the dynamic error caused by the 
asymptotic tails of the SDF. The analyzed measurement 
system consisting of the weakly damped transducer and the 
Bessel filter, indeed has very little curvature in its phase. 
This is further illustrated by an almost constant time delay 
as function of bandwidth (see τ  in Fig. 1). The common 
estimate (broken) here predicts a far too low error bound 

primarily due to the neglect of the important asymptotic tails 
of the pulse spectra/SDF. As seen from these simulations, 
only for such pulses as the Gaussian with very high 
asymptotic damping this estimate is accurate. For the saw 
pulse with CB ωω 1.0=  the least error is, according to the 
simulations (RU), reached for a cross-over frequency of 

Cωω 77.00 =  ( )Cω75.0  of the correction filter. Even if the 
RU is an upper bound of the simulated dynamic error, the 
deviation appears systematic. 

5.    CONCLUSION 

A general method for estimating an upper bound of 
linear dynamic errors of measurement systems has been 
proposed and verified. Denoted response uncertainty (RU), 
it was shown to add linearly with the static uncertainty to 
give an estimate of the total measurement uncertainty. In the 
language of GUM, it can be included as a systematic 
uncorrected type B contribution. An example illustrated how 
subsystems of different characters easily are included to 
evaluate the total dynamic performance of a measurement 
system. The unprecedented simultaneous, equivalent and 
general analysis of the phase and amplitude characteristics 
of the whole system against the entire signal spectrum for 
estimating a dynamic error bound, is the hallmark of the 
RU. 

 
In many respects the derived method parallels the well 

established stochastic GUM method for estimating the 
measurement uncertainty. It evaluates dynamic effects 
without making any modifications whatsoever to static error 
contributions. Due to this equivalence, simplicity and broad 
applicability it has a potential of becoming a widely spread 
method for estimating measurement errors in the time 
domain. 
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