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Abstract: Mechanical noise due to Brownian motion, 
electronic noise introduced by the interface circuit due to 
thermal noise sources in the electronic devices and 
quantisation noise due to the analog to digital conversion 
process are the main three noise sources presented in a 
sigma-delta modulator (Σ∆M) type system applied to a 
micromachined accelerometer: Based on theory of limit 
cycles in nonlinear closed loop systems, the mathematical 
model and formulae for power spectral density calculation 
of a micromachined accelerometer will be derived in the 
paper. The theoretical considerations will be verified with 
the simulation results in MatlabSIMULINK. 
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1.   INTRODUCTION 

In a typical capacitive digital accelerometer, the proof mass 
is suspended above a substrate by compliant springs. Two 
nominally equal-sized sense capacitors are formed between 
the electrically conductive proof mass and stationary 
electrodes [1,2]. When the substrate undergoes acceleration, 
the proof mass displaces from the nominal position, causing 
an imbalance in the capacitive half-bridge, shown in Fig.1a. 
This imbalance can be measured using charge integration 
technique [1].  
Force balancing of the proof mass is attained by enclosing 
the proof mass in a negative feedback loop. The feedback 
loop measures deviations of the proof mass from its nominal 
position and applies a force to keep the proof mass centered. 
The accelerometer output is taken as the force needed to 
null, or zero, the position, shown in Fig.1b. 

The resolution and dynamic range of such a sensor are 
mainly determined by the signal to noise ratio of the system. 
A closed loop digital accelerometer suffers from three noise 
sources: 1) Brownian mechanical noise originating from the 
constant bombardment of air-molecules on the proof mass; 
2) thermal noise from the electronic position measurement 
interface and 3) quantisation noise from the analogue to 
digital conversion process. The Σ∆M control system should 
be designed in such a way that the quantisation noise is 
much less significant than the other two noise sources since 
it is relatively easy to reduce the quantisation noise by 
increasing the sampling frequency of the modulator. It is 
well known that the sigma-delta modulator system shapes 
the quantisation and electronic noise in an advantageous 
way by attenuating it in the signal band. 
Using theory of limit cycles, the mathematical model and 
formulae for determination of power spectral density of 
micromachined digital accelerometer is derived in the paper.  
 
 

2.   LINEARISED MODEL AND LIMIT CYCLES IN 
CAPACITIVE DIGITAL ACCELEROMETER 

According to Fig. 1b, the effects of the comparator and 
sampler can be modeled by a complex sinusoidal dual-input 
describing function N(χ,Φ) [3,4]. This approach is justified 
in this case since the sensing element effectively acts as a 
mechanical low-pass filter, which attenuates the harmonic 
components and quantisation noise vQ introduced by the 
comparator.  As a consequence, the complexity of the 
mathematical model may be considerably reduced as shown 
in Fig. 2. 

As in a true Σ∆M 
the unforced system 
is expected to 
exhibit a continuous 
oscillations. With 
the simplifications 
described above, it 
is now a relatively 
simple matter to 
predict these limit 
cycles conditions. 
This may be 
achieved by the 
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Fig. 1a) Sense element, b) schematic of sigma-delta feedback loop 



solution of the system characteristic equation 
     (1) ( ) ( )1 21 j ,c c G Nω χ Φ+ = 0

Here, c1= Tf.kfb/(TsVfb) and the describing function for the 
sampler and relay combination is given by [3,4] 

( ) 4, jDN Φχ Φ
χπ

−= e ,    (2) 

where D denotes operating level of relay (in our case D = 
Vfb), Φ the lagging angle introduced by the sampling action 
and χ is the amplitude of the sinusoidal input signal to the 
comparator. By means of Eq. (1) Eq. (2) yields 
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−+ = 0 .   (3) 

Since the mass of the sensing element must be maintained at 
the central position and for accurate coding the average error 
must approach zero, under this conditions the characteristic 
equation needs only by solved at specific frequencies ω = 
ωs/2n, n being the number of samples per half cycles of the 
sinusoidal input signal to the sampler. Limit cycle 
oscillations may only exist at these frequencies [5]. 
Graphical solution of Eq. (3) may be found in [6] however is 
not single valued. By solving Eq. (3) at the possible limit 
cycle modes an expression to predict the amplitude of input 
sinusoidal signal to comparator may be found 
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.    (4) 

As it will be mentioned later, a very efficiency tool to 
determine the frequency of input sinusoidal signal to 
comparator is MatlabSIMULINK.  
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Fig. 2 Simplified model of Σ∆M 

3.   VALIDITY OF THE LINEARISED MODEL 

Up to this point, the Σ∆M was considered to be unforced. In 
the unforced Σ∆M the amplitude of the sinusoidal signal vout 
representing limit cycles is 4Vfb/π and the mechanical low-
pass filter attenuates other harmonic components and 
quantisation noise vQ introduced by the comparator as stated 
in the previous section. In order to predict the closed loop 
performance the effect of an input force Finp had to be 
investigated. In this case, the characteristic equation leads to 
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inpF inpN F χ Φ is the triple-input describing function. 
By solving the Eq. (5), we obtain  
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The voltage vout consists of two components, Finp/c1 due to 
the input force and 4Vfb/π due to the limit cycle.  If, as it is 
normally found in practice, Finp/c1< 4Vfb/(10π) then the trial-
input describing function ( ), ,

inpF inpN F χ Φ approximates to 
the dual-input describing function N(χ,Φ).  
 
4. POWER SPECTRAL DENSITY AND EFFECTIVE 

NUMBER OF BITS OF Σ∆M 
Linearised mathematical model of Σ∆M with a Brownian 
and an electronic noise sources is shown in Fig. 4. Here, the 
voltage signal vout is multiplied by c1 to have the result in 
domain of measured force. Power spectral density of the 
Brownian noise is given by 

4B B MN k R= T ,     (7) 

where kB is the Boltzman constant and T the temperature. 
Power spectral density NE of the electronic noise introduced 
by capacitive position measurement interface consists of two 
parts according to formula 

E EA CN N N= + ,     (8) 

where NEA is a power spectral density of a standard low-
noise amplifier given in its datasheets and NC a power 
spectral density of an equivalent capacitance C. Power 
spectral density NQ of the quantization noise may be 
obtained from uniform probability of distribution and is 
given by 
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Fig. 3 Simplified model of Σ∆M with Brownian and 

electronic noise sources 

It may be easily shown that the input measured force FM to 
digital filter is given by 
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in frequency domain. By means of Eq. (2) and (4) we 
receive that 
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in the signal band, Eq. (9) yields 
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Eq. (12) shows that the measured force and Brownian noise 
remain unaffected while the quantisation and electronic 
noises are shaped differently by the Σ∆M.  Considering all 
noise sources and measured force are mutually independent, 
the power spectral density of FM is given by 
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where NB = FB(jω).FB(-jω),  NE = vE(jω).vE(-jω) and NQ = 
vQ(jω).vQ(-jω). Typical bulk micromachined, capacitive 
accelerometers have sensing element with a critical damping 
((RMCM)2 ≈4mCM) [2], which leads to the following 
approximations: 
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where G(jω) is the transfer function of the sensing element 
relating force to proof mass displacement as a second order 
mass-damper-spring (m - RM - 1/CM) system. By means of 
Eq. (15), (15) and (16) the Eq. (13) yields  
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and 

( ) ( )
1

2

dB

4
22 2 2 4

2
'

10 2

j 1
PSD 10log

FS

E
inp B M Q

s

NF N mC c N n
c

F

ωω ω
ω

⎛ ⎞⎛ ⎞⎜ ⎟+ + + ⎜ ⎟
⎜ ⎟⎝ ⎠= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

6
 

(dB/Hz),  1for 
MmC

ω > ,                                              (18) 

where FFS=FfbTf /Ts.      

One of the most important parameters of Σ∆M is effective 
number of bits (ENOB) given by [1] 
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where Fef is the RMS of Σ∆M noise given by 
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in the signal band up to fm. It may be easily shown that by 
means of Eq. (9) the Eq. (19) leads to 
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5.   SIMULATION RESULTS 
 The MatlabSIMULINK simulation model of Σ∆M is 
depicted in Fig. 4. The parameters of the Σ∆M used during 
the simulation were as follows: m=1.7x10-6 kg, RM=5x10-3 
N(m/s)-1, CM =0.1m/N, Vfb = 5 V, c1 = 0.5x10-6 N/V, c2 = 
5x104 V/N, Tf/Ts=0.4 and fs=1 MHz. At the beginning, the 
dual-input describing function was verified. The value of 
input force, electronic and Brownian noises were set to zero 
during the simulation. the amplitude of sinusoidal output 
force of mechanical filter was 1.85x10-9 N and frequency 
fs/(2n)=15 873 Hz (n=32). The theoretically predicted value 
(χ/c2) found by means of Eq. (4) was 1.89 x10-9 N, which 
agreed well with the value predicted by simulation. In order 
to verify the Eq. (17) and (18) a few simulation experiments  



Fig. 4 MatlabSIMULINK model of Σ∆M
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Fig.  5 Simulated and theoretically predicted power 
spectral densities. The input signal was assumed to be 
sinusoidal with a frequency 1.59 kHz and an amplitude 
of a) 0.22 µN b) 0.02 µN  

 

were made. In the first 
series of experiments, only 
the amplitude of input 
force was changed while 
Brownian and electronic 
noise sources remained 
equal to zero. Fig. 5 shows 
the simulated and 
theoretically predicted 
power spectral densities of 
output bitstreams related to 
full-scale feedback force. 
The input signal was 
assumed to be sinusoidal 
with a frequency 1.59 kHz 
and an amplitude of 0.22 
µN in Fig. 5a and 0.02 µN 
in Fig. 5b. The power 
spectral density noise floor 
calculated by means of Eq. 
(17) was in both cases 
equal to – 127 dB/Hz. As it 
is obvious from Fig. 5, the 
simulated power spectral 
density approximates this 
value well. In the second 
series of experiments, an  
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Fig. 6 Simulated and theoretically predicted power 
spectral densities. The input signal was assumed to be 
sinusoidal with a frequency 1.59 kHz and an amplitude 
of 0.02 µN and power spectral density of electronic noise 
equal to a) 5.3x10-16 V2/Hz b) 2.6x10-14 V2/Hz  

Eq. (23) 

Eq. (22) 
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electronic noise was added to SIMULINK model. The 
amplitude of input sinusoidal signal was 0.02 µN and 
frequency 1.59 kHz. The simulated and theoretically 
predicted power spectral densities of output bitstreams 
related to full-scale feedback force are shown in Fig. 6. The 
power spectral density of electronic noise NE was assumed 
to be 5.3x10-16 V2/Hz in Fig. 6a and 2.6x10-14 V2/Hz in Fig. 
6b. 

6.   CONCLUSIONS 

The formulae derived in this work allow a structured 
approach to the design of a Σ∆M control system for 
micromachined sensors. The Brownian noise remains 
unaffected while the electronic and quantisation noise are 
shaped differently by the Σ∆M. Also, this work will  
allow to predict which noise source is dominant for different 
operating conditions. Consequently, the most important 
design parameter for the Σ∆M, the sampling frequency, can 
be chosen so that the quantisation noise level lies well below 
the other noise sources. For high oversampling ratios, 
Brownian noise will dominate as it is not shaped by the 
modulator. If the achieved ENOB is not sufficient for the 
sensor specifications, packaging at reduced pressure has to 
be considered as this lowers the Brownian noise level. 
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