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Abstract: A density standard realized by 1 kg silicon 
spheres has been used for measuring the density of solid 
samples by hydrostatic weighing.  Details are given for the 
structure of the measurement system, procedure for the solid 
density measurement, and uncertainty evaluation.  The 
density of a 1 kg silicon sample has been measured with a 
relative combined standard uncertainty of 1.2 parts in 107.  
When the effect of covariances in input quantities is taken 
into account, the relative combined uncertainty in measuring 
the density difference between the silicon spheres and the 
silicon sample may be reduced to 3.6 parts in 108.  
Uncertainty sources in the hydrostatic weighing and the 
effect of covariance in the input quantities are discussed. 
 
Keywords: density standard, silicon crystal, hydrostatic 
weighing, correlation, covariance. 

1.  INTRODUCTION 

Hydrostatic weighing is one of reliable methods for 
measuring the density of gases, liquids, and solids. Water is 
the most common material used for a density standard. 
Since the density of water is dependent on its isotopic 
compositions, Standard Mean Ocean Water (SMOW) is 
usually chosen for specifying isotopic compositions of water.  
The relative expanded uncertainty (k = 2) for the density of 
water having the same isotopic compositions with those of 
SMOW is estimated to be 8-9 parts in 107 [1]. 

Through a research for the determination of the 
Avogadro constant, NA, by the X-Ray Crystal Density 
(XRCD) method, the density of a 1-kg silicon sphere has 
been determined with a relative standard uncertainty of 7 
parts in 108 [2], being much less than that of water. Such a 
silicon sphere is therefore useful for measuring the density 
of solid samples by hydrostatic weighing. 

In the hydrostatic weighing system described here [3, 4], 
two 1-kg silicon spheres are used as a density standard.  A 1 
kg silicon sample is placed between the two standards. 
When the mass of the sample is measured relative to one of 
the silicon spheres, their masses are correlated. Since the 
diameters of the two silicon spheres were measured by 
optical interferometry, their volumes are also correlated.  In 
this study the effect of the correlations has been taken into 

account for accurately evaluating the uncertainty in the 
density measurement by hydrostatic weighing. 

2.  HYDROSTATIC WEIGHING SYSTEM 

Figure 1 shows a hydrostatic weighing system developed 
in this study. Two silicon spheres, S4 and S5, are used as the 
solid density standards.  Their volumes have already been 
calibrated by optical interferometry [5-8].  Tridecane (n-
C13H28, ρ ≅ 756 kg/m3 at 20 °C) is used as a working liquid, 
in which the two silicon spheres and the solid sample under 
study are weighed alternately with an electronic balance 
using a weight exchange mechanism. The reason for using 
the two silicon spheres is to cancel the effect of vertical 
density gradient in the liquid, which may by introduced by 
the temperature gradient and the gravity [9].  The two 
silicon spheres and the solid sample are independently 

Si sphere S4

Counter weight

Solid sample

Si sphere S5

Water bath

to electric balance

Weight exchange mechanism

 
Fig. 1  Hydrostatic weighing system for measuring the density of solid 
samples with respect to the single-crystal silicon spheres [3, 4]. 
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placed on and removed from the cage by the weight 
exchange mechanism.  As long as the level of the liquid is 
kept constant during the weight exchange, the buoyancy 
force acting on the cage can be canceled. 
 
2.1.  Procedure for the density measurement 

 When S4 is weighed in the liquid, as shown in figure 2, 
its apparent mass in the liquid is about 675 g because of the 
buoyancy force acting on the sphere.  In order to operate the 
balance near 1 kg, a stainless steel weight with a mass of 
325 g is placed on the balance pan with the automatic 
handler.  At this state, the balance reading, BS4, being a 
difference from 1 kg, is recorded.  The sphere and the 
weight are then removed from the balance, and a 1 kg 
stainless steel weight is placed on the balance pan with the 
automatic handler, as shown in figure 3.  At this state, the 
balance reading, B0, being a difference from 1 kg, is 
recorded.  The relation of the forces acting in this system are 
therefore summarized to be 
 

mS4 gS4 − ρliq,S4(t)VS4(t)gS4 + m324 gbal 
− ρair(tair)V325(tair)gbal − KBS4 gbal  

= m1000 gbal − ρair(tair)V1000(tair) gbal − KB0 gbal  (1) 
 
where mS4, m325, and m1000 are the masses of the sphere S4, 
325 g weight, and 1 kg weight, respectively, ρliq,S4(t) and 
ρair(tair) the density of the liquid near the silicon sphere S4 at 
temperature t and density of air at temperature tair, 
respectively, VS4(t) the volume of S4 in the liquid at 
temperature t, V325(tair) and V1000(tair) the volumes of the 325 
g and 1 kg weights at temperature tair, respectively, gS4 and 
gbal the local accelerations due to gravity at the levels of 
silicon sphere S4 and the balance, respectively, and K the 
balance sensitivity.  Since the vertical distance between the 
balance and the sphere S4 is about 1 m, the gravity gradient 
coefficient, CS4 = gbal/gS4, is estimated to be 0.999 9997. 

 In equation (1), the balance sensitivity K, which is the 
relationship between the force and the balance reading, may 
be determined by loading and unloading a calibrated weight 
on the balance pan with the automatic handler.  From 
equation (1), the liquid density near S4 is determined as 
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where αSi is the linear thermal expansion coefficient of 
silicon crystals, and βSS the bulk thermal expansion 
coefficient of the stainless steel weight. 
 When S5 is weighed in the liquid, the liquid density near 
S5 is similarly given by 
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where mS5 is the mass of the silicon sphere S5, BS5 the 
balance reading when S5 is weighed in the liquid, VS5(t) the 
volume of S5 in the liquid at temperature t, and CS5 = gbal/gS5 
with gS5 being the accerelation due to gravity at the level of 
S5.  From equations (2) and (3), the liquid density near a 
solid sample A is determined, assuming that any vertical 
density gradient in the liquid is linear, with 
 
  ( ) ( ) ( ) 2/][ S5liq,S4liq,Aliq, ttt ρρρ +=     (4) 

 
 When a 1-kg silicon sample A under study is weighed in 
the liquid, its volume at a temperature t is given by 
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Fig. 2  Forces acting in the system when the 325 g stainless steel weight 
in air and the silicon sphere S4 in the liquid are loaded on the 
electronic balance. 
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Fig. 3  Forces acting in the system when the 1 kg stainless steel weight 
in air is loaded on the electronic balance.  Nothing is loaded in the 
cage. 
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where mA is the mass of the sample A, BA the balance 
reading when the sample A is weighed in the liquid, and CA 
= gbal/gA with gA being the accerelation due to gravity at the 
level of sample A.  The density of the sample A at 
temperature t is therefore given by 
 
     ρA(t) = mA/VA(t).       (6) 
 
The density of the sample A under study is thus measured 
with respect to those of the silicon spheres. When the 
apparent mass of the solid sample in the liquid is different 
from 675 g, a different weight is placed on the balance so 
that the balance is always operated near 1 kg.  
 The procedure for a single density measurement of a 
solid sample therefore concists of the following steps: 

Step 1 Measurements of the air temperature, pressure, and 
humidity for determining the air density ρair.  
Measurement of the liquid temperature t. 

Step 2 Calibration of the balance sensitivity K by loading 
and unloading a calibrated weight on the balance. 

Step 3 Loading a 1 kg weight on the balance with loading 
nothing in the cage, and recording balance reading 
B0.  This reading is used as a zero point in the 
hydrostatic weighing. 

Step 4 Unloading the 1 kg weight and loading 325 g 
weight on the balance.  Loading the silicon sphere 
S4, and recording the balance reading BS4 for 
determining the liquid density ρliq,S4 near S4. 

Step 5 Unloading S4 and loading S5 in the cage.  
Recording the balance reading BS4 for determining 
the liquid density ρliq,S5 near S5. 

Step 6a For measuring the density of a 1 kg silicon crystal, 
unloading S5 and loading the sample A in the cage.  
Recording the balance reading BA for determining 
the sample density ρA at temperatute t. 

Step 6b When the apparent mass of the sample A in the 
liquid is different from 675 g, unloading the 325 g 
weight and loading a different weight on the 
balance so that the balance is operated near 1 kg.  
Unloading S5 and loading the sample A in the cage.  
Recording the balance reading BA for determining 
the sample density ρA at temperatute t. 

For completing these steps 1 to 6, it usually takes 20 
minutes.  This system is presently used at the NMIJ for 
calibrating the density of silicon crystals and solid samples, 
such as stainless steel weights, glasses, metals, and 
polymers. 
 An example of density measurements of a 1 kg silicon 
crystal is shown in figure 4. A total of 61 density 
measurements were conducted in this example. Each data 
point was deduced from the procedure with steps 1 to 6. As 
can be seen from the figure, a very stable result was 
obtained for a total of about 20 hours. The density of the 
sample was thus measured with a relative standard deviation 
of 1.8 × 10−7. 
 
2.2.  Uncertainty in the hydrostatic weighing 

 When equations (2) to (6) used for deducing the density 
of a solid sample, ρA, are expressed as a function with N 
input quantities 
 
   ( )Ni xxxxxf ,,,,,, 321A ⋅⋅⋅⋅⋅⋅=ρ      (7) 

 
the combined variance of ρA is generally given by 
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where uc(ρA) is the combined standard uncertainty of ρA, 
u(xi) the standard uncertainty of the imput quantity xi, and 
u(xi, xj) the covariance between the two imput quantities xi 
and xj.  In equation (8), the first and second terms therefore 
correspond to the variance and covariance components, 
respectively [10]. 
 In general, the variances for all imput quantities may be 
evaluated for estimating uc, but it is rather difficult to 
evaluate all covariances between pairs of so many input 
quantities.  In this work, the effect of dominat covariances 
are therefore evaluated: one is the covariance between the 
masses of the two silicon spheres, mS4 and mS5, and the other 
is the covariance between their volumes, VS4 and VS5.  In the 
example of density measurement shown in figure 4, the 
mass of the 1 kg silicon sample was measured with respect 
to that of S4.  This means that the mass of sample A, mA, is 
strongly correlated to mS4 and mS5.  Following correlation 
coefficients were therefore taken into account for estimating 
the combined standard uncertainty in the density 
measurement:  
 
 r(mS4, mS5) = u(mS4, mS5)/[u(mS4)u(mS5)] (9) 
 r(VS4, VS5) = u(VS4, VS5)/[u(VS4)u(VS5)] (10) 
 r(mS4, mA) = u(mS4, mA)/[u(mS4)u(mA)] (11) 
 r(mS5, mA) = u(mS5, mA)/[u(mS5)u(mA)] (12) 
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Fig. 4  An example of density measurements of a 1 kg silicon crystal by 
hydrostatic weighing.  Values are at 20.000 °°°°C and 101.325 kPa. 
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These correlation coefficients are all positive in this case. 
 In stead of analytical evaluation given in equation (8), 
the combined standard uncertainty may be deduced from 
numerical evaluation [10].  When a change in ρA due to a 
change in an input quantity xi is expressed as 
 
 Zi = [f(x1,…, xi + u(xi),…, xN) 
  − f(x1,…, xi − u(xi),…, xN)]/2 (13) 
 
the combined standard uncertainty in ρA is numerically 
obtained as 
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From equation (14), the combined standard uncertainty was 
estimated in this study. 
 One of difficulties in evaluating the uncertainty in the 
hydrostatic weighing described here is how to estimate the 
effect of non-linear density gradient in the liquid.  As can be 
seen in equation (4), the density of the liquid near the solid 
sample, ρliq,A, may not be determined accurately if the 
vertical temperature gradient in the liquid has a relatively 
large non-linearity.  In order to evaluate the effect, the 
differences in the measured solid densities determined from 
the hydrostatic weighing and from the pressure-of-flotation 
method [11, 12] were compared.  Results of the 
measurements for five samples have shown that the relative 
difference in the densities determined by the two 
independent methods was as small as 3.0 × 10−8 with a 
standard deviation of 3.3 × 10−8.  Since the result from the 
pressure-of-flotation method is considered to be almost free 

from the non-linear gradient in the liquid density, this 
difference is considered to be the magnitude of possible 
non-linear effect in the hydrostatic weighing. 
 Table 1 lists influence quantities in the hydrostatic 
weighing of the 1 kg silicon crystal.  Major influence factors 
are attributed to the volume uncertainties, u(VS4) and u(VS5), 
and also to their covariance, u(VS4, VS5).  It should be noted 
that the effects of covariances u(mS4, mA) and u(mS5, mA) on 
uc(ρA) are negative because the sensitivity coefficient ∂f/∂mA 
is negative and those for ∂f/∂mS4 and ∂f/∂mS5 are positive.  
The covariance between the masses of silicon sphere and the 
solid sample therefore contributes to reduce the combined 
standard uncertainty in ρA, but the contribution is trivial in 
this case because the major uncertainty comes from the 
uncertainty in the volumes of S4 and S5.  In this example, 
the density of the 1 kg silicon sample, ρA, was thus 
determined with a relative combined standard uncertainty of 
1.2 × 10−7. 
 Table 2 shows an uncertainty evaluation for the same 
solid sample.  In this case, the combined standard 
uncertainty of the density difference, ∆ρ = ρA – (ρS4 + 
ρS5)/2, is evaluated.  Evaluation of such a density difference 
is especially useful for determining the Avogadro constant, 
where the densities of many silicon samples are measured 
with respect to those of reference silicon spheres [2, 13].  As 
can be seen in the table, the uncertainty in the volumes, 
u(VS4) and u(VS5), does not contribute to the uncertainty in 
∆ρ.  Consequently, the density difference ∆ρ was 
determined with a relative combined standard uncertainty of 
3.6 × 10−8.  If the covariances between the masses mS4, mS5, 
and mA are not taken into account, the relative combined 
standard uncertainty increases to 5.4 × 10−8, showing 
importance of evaluating covariances in input quantities.  If 
the effect of non-linear gradient in the liquid density is 

Table 1  Uncertainty evaluation for the density measurement of a 1-kg 
silicon crystal under the presence of covariances. Correlation 
coefficients: r(mS4, mS5) = 0.974, r(mA, mS4) = 0.964, r(mA, mS5) = 0.939, 
and r(VS4, VS5) = 0.433. 
 
Uncertainty source u(xi) Zi

2/(kg/m3)2 or 
   2ZiZjr(xi, xj)/(kg/m3)2 
 
Mass 
 mS4 16.0 µg 0.33 × 10−8 
 mS5 16.0 µg 0.33 × 10−8 
 Covariance between mS4 and mS5  0.64 × 10−8 
 m1000 28.0 µg 0.00 × 10−8 
 m325 51.0 µg 0.00 × 10−8 
 mA 16.4 µg 0.63 × 10−8 
 Covariance between mA and mS4  −0.88 × 10−8 
 Covariance between mA and mS5  −0.85 × 10−8 
Volume 
 VS4 0.000 052 cm3 1.99 × 10−8 

 VS5 0.000 064 cm3 3.01 × 10−8 

 Covariance between VS4 and VS5  2.12 × 10−8 
 V1000 0.020 cm3 0.00 × 10−8 

 V325 0.025 cm3 0.00 × 10−8 

Non-linear liquid density gradient  0.49 × 10−8 
Standard deviation of the mean  0.17 × 10−8 
 
uc(ρA) 0.000 28 kg/m3 
 

Table 2  Uncertainty evaluation for the density difference, ∆∆∆∆ρρρρ = ρρρρA – 
(ρρρρS4 + ρρρρS5)/2, under the presence of covariances. Correlation 
coefficients: r(mS4, mS5) = 0.974, r(mA, mS4) = 0.964, r(mA, mS5) = 0.939, 
and r(VS4, VS5) = 0.433. 
 
Uncertainty source u(xi) Zi

2/(kg/m3)2 or 
   2ZiZjr(xi, xj)/(kg/m3)2 
 
Mass 
 mS4 16.0 µg 0.15 × 10−8 
 mS5 16.0 µg 0.15 × 10−8 
 Covariance between mS4 and mS5  0.29 × 10−8 
 m1000 28.0 µg 0.00 × 10−8 
 m325 51.0 µg 0.00 × 10−8 
 mA 16.4 µg 0.63 × 10−8 
 Covariance between mA and mS4  −0.59 × 10−8 
 Covariance between mA and mS5  −0.58 × 10−8 
Volume 
 VS4 0.000 052 cm3 0.00 × 10−8 

 VS5 0.000 064 cm3 0.00 × 10−8 

 Covariance between VS4 and VS5  0.00 × 10−8 
 V1000 0.020 cm3 0.00 × 10−8 

 V325 0.025 cm3 0.00 × 10−8 

Non-linear liquid density gradient  0.49 × 10−8 
Standard deviation of the mean  0.17 × 10−8 
 
uc(∆ρ) 0.000 084 kg/m3 
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removed, the relative combined standard uncertainty in the 
measurement of ∆ρ further reduces to 2.0 × 10−8. 
 Table 3 lists influence quantities in the density 
measurement of a 1 kg stainless steel.  Since the apparent 
mass of this sample in the liquid was about 900 g, a 100 g 
weight with a mass m100 and a volume V100 was placed on 
the balance during the hydrostatic weighing of the sample.  
As can be seen in this table, the number of influence 
quantities is much more than that for density measurements 
of 1 kg silicon crystals because different weights were used 
in the hydrostatic weighing: 325 g weight for the two silicon 
spheres and 100 g weight for the solid sample.  In this case, 
the largest uncertainty source lies in the uncertainty in the 
air density measurement.  The density of the 1 kg stainless 
steel weight, ρA, was thus determined with a relative 
combined standard uncertainty of 1.2 × 10−6.  Precise 
measurements of the volumes of stainless steel weights are 
especially important for calibrating the volumes of air-
density artifacts [14].  They have nearly the same masses, 
but different volumes.  By weighing them in air, the density 
of air is directly measured from their apparent masses in air, 
providing much better uncertainty than that obtained from 
air pressure, temperature, and humidity measurements [15]. 
 Table 4 lists examples of density measurements for 
different materials.  Solid samples with different masses and 
densities have been measured by the hydrostatic weighing 

system described in section 3.1.  The uncertainty in the 
density measurement depends on the mass and density of 
each sample, but the uncertainty in the volume is almost the 
same for any solid samples except for 1 kg silicon crystals.  
As can be seen from equation (5), hydrostatic weighing 
determines the volume of the sample from mass 
measurement in air and from apparent mass measurement in 
liquid.  Since the uncertainty in the mass of a combination 
of weights is almost the same for any measurement 
described here, the combined standard uncertainty in the 
volume determination of the solid sample is almost equal to 
or less than 0.0002 cm3 = 0.2 mm3.  This means that when 
the volume of the solid sample is larger, better uncertainty is 
obtained. 
 
3.  DISCUSSIONS 

 In this work, examples of density measurements for 
silicon crystals, metals, glasses, and polymers have been 
presented.  Best uncertainties were obtained for 1 kg silicon 
crystals because their mass, volume, and thermal expansion 
coefficient are nearly the same with those of silicon spheres 
used as a solid density standard.  Uncertainty evaluations for 
1 kg silicon crystals have therefore shown that uc,r(ρ) = 1.2 × 
10−7 and uc,r(∆ρ) = 3.6 × 10−8.  For other materials, the 
uncertainty depends on their mass and density, but the 
combined standard uncertainty in their volume 
determination, uc(V), is approximately equal to or less than 
0.2 mm3. 
 Such a capability in the density measurement is presently 
used at the NMIJ for the determination of the Avogadro 
constant, NA, by the x-ray crystal density (XRCD), where 
both the hydrostatic weighing method and the pressure-of-
flotation method are used for measuring density differences 
between silicon crystals. 
 In the field of material science, density measurements 
for solid samples with small volumes, such as 1 cm3 or less, 
are often needed.  Further reduction of uncertainty in the 
volume determination is therefore being considered at the 
NMIJ for measuring the density of small samples.  As can 
be seen in figure 7, one of the serious uncertainty sources 
lies in a scatter in the density measurement.  The most 
serious cause of this scatter is attributed to the instability in 
the effect of meniscus at the suspension rod.  One of 

Table 3  Uncertainty evaluation for the density measurement of a 1 kg 
stainless steel.  Correlation coefficients: r(mS4, mS5) = 0.974, r(mA, mS4) 
= 0.000, r(mA, mS5) = 0.000, and r(VS4, VS5) = 0.433. 
 
Uncertainty source u(xi) Zi

2/(kg/m3)2 or 
   2ZiZjr(xi, xj)/(kg/m3)2 
 
Mass 
 mS4 16.0 µg 3.78 × 10−8 
 mS5 16.0 µg 3.78 × 10−8 
 Covariance between mS4 and mS5  7.37 × 10−8 
 m1000 28.0 µg 2.66 × 10−6 
 m325 51.0 µg 1.54 × 10−6 
 m100 8.0 µg 4.36 × 10−7 
 mA 15.0 µg 1.25 × 10−6 
 Covariance between mA and mS4  0.00 × 10−8 
 Covariance between mA and mS5  0.00 × 10−8 
Volume 
 VS4 0.000 052 cm3 2.29 × 10−7 

 VS5 0.000 064 cm3 3.46 × 10−7 

 Covariance between VS4 and VS5  2.44 × 10−7 
 V1000 0.020 cm3 1.89 × 10−6 

 V325 0.025 cm3 5.15 × 10−7 

 V100 0.0038 cm3 1.34 × 10−7 

Liquid temperature 0.003 °C 7.83 × 10−7 
Air temperature 0.05 °C 0.37 × 10−9 
Air density 0.0012 kg/m3 7.34 × 10−5 
Bulk thermal expansion 
 Silicon crystal 3.0 × 10−8 K−1 0.00 × 10−9 
 Stainless steel weight 3.0 × 10−6 K−1 0.00 × 10−9 
 Solid sample A 3.0 × 10−6 K−1 2.36 × 10−8 
Balance sensitivity K 1.8 × 10−6 4.69 × 10−7 
Gravity gradient C 2.0 × 10−8 7.62 × 10−7 
Non-linear liquid density gradient  5.62 × 10−8 
Standard deviation of the mean  7.64 × 10−7 
 
uc(ρA) 0.0093 kg/m3 

 

Table 4  Examples of density measurements for different solid 
materials.  Values are at 20.000 °°°°C and 101.325 kPa. 
 
Material mA/g ρA/(kg/m3) VA/cm3 uc(VA)/cm3 
 
Silicon crystal 1000 2329.08351 429.581 071 0.000 052 
Silicon crystal 500 2329.1504 214.556 11 0.000 16 
Silicon crystal 200 2329.0899 86.620 14 0.000 17 
Silicon crystal 62 2329.0766 26.706 16 0.000 18 
Stainless steel 1000 7965.9660 125.534 07 0.000 15 
Stainless steel 500 7991.6104 62.487 57 0.000 15 
Stainless steel 200 7994.9408 25.015 82 0.000 14 
Stainless steel 100 7995.2595 12.507 41 0.000 14 
Stainless steel 50 7995.1272 6.253 81  0.000 18 
Gold 100 19279.573 5.249 80  0.000 14 
Fused quartz 190 2199.7074 85.973 75 0.000 18 
Polystyrene 1.43 1048.1416 1.364 82 0.000 21 
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possible ways to reduce the scatter is to implement a 
magnetic coupling used in magnetic suspension densimeters 
[16-20].  The magnetic suspension densimeter is a device 
developed to measure the density of fluids.  When the coil 
suspended from the balance is kept in air and the permanent 
magnet is kept in the liquid, the buoyancy forces acting on 
solid materials in the liquid may be measured without the 
effect of meniscus.  Such a principle will be useful for 
measuring the volume and density of new materials. 
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