
XVIII IMEKO WORLD CONGRESS 
Metrology for a Sustainable Development 

September, 17 – 22, 2006, Rio de Janeiro, Brazil 
 
 
 

TIME-VARYING BUTTERWORTH FILTERS WITH COMPENSATED G ROUP DELAY  
 

Roman Kaszynski 1, Jacek Piskorowski 2 
 

1 Institute of Control Engineering, Szczecin University of Technology, Szczecin, Poland, e-mail: roman.kaszynski@ps.pl 
2 Institute of Control Engineering, Szczecin University of Technology, Szczecin, Poland, e-mail: jacek.piskorowski@ps.pl 

 
 

Abstract: This paper presents the concept of time-varying 
Butterworth filters with linear phase response. The 
compensation of the phase characteristics is carried out with 
the aid of the phase shifter system. The paper shows that it is 
possible to shorten the transient state in low-pass phase-
compensated analog filters by varying in time selected 
parameters. This paper contains simulation results of the 
proposed filters and comparison with the classic circuits. 
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1.    INTRODUCTION 

The fast evolution of the digital signal processing in the 
last years has conducted to the reducing of interest of new 
solutions in the analog technics. Nowadays it is necessary to 
improve the quality of the analog devices, especially in 
these places, where we cannot use the digital technics. There 
are many cases when it is important to preserve the 
sharpness of the step response and at the same time the 
phase linearity. The design methods of analog filters are 
described in detail in the rich literature [1], [2], [3], [4] and 
concern mainly filters with constant parameters. 

The main goal of the Butterworth approximation is to 
obtain a maximally flat gain characteristics in the filter pass-
band. The square of the gain characteristics of the low-pass 
Butterworth filter can be written as follows: 
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where: N - order of the filter, ω0 - 3dB limit frequency. 
Low-pass Butterworth filters are forming as a result of 
specified approximation of the gain characteristics, however 
the phase characteristics is the secondary effect of this 
approximation. In the result of this effect, the phase 
characteristics is nonlinear. Nonlinearity of the phase 
characteristics causes that the dynamic properties of 
designed filter may be undesirable. 

2.    GROUP DELAY COMPENSATION 

For the purpose of the group delay compensation one 
can use the phase shifters [3], [5]. Transfer function of the 
first order phase shifter can be written as follows: 
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but in the case of the second order phase shiter the transfer 
function has the following form: 
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The above mentioned systems are stable when µ > 0 and 
Q > 0. The specificquality of the phase shifters is its con-
stancy of the gain characteristics. These systems are only 
used to form the phase characteristics. Owing to these 
properties we know that if we connect in series the phase 
shifter to the compensating filter then the gain chara-
cteristics of the resultant system remains without any 
changes, however the group delay characteristics will be the 
result from a summation of the phase shifter and the 
compensating filter characteristics. The procedure of the 
group delay compensation is based on the choice of the 
phase shifter(s) parameters in order that the resultant group 
delay characteristics will be as flat as possible in the filter 
pass-band. 

The N-th order low-pass filter structure can be described 
by the transfer function which is the product of 2-nd order 
systems for even filter orders or the product of 2-nd order 
systems and one 1-st order system for odd filter orders. This 
can be written as follows: 
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for even orders N = 2i  and for odd filter orders N = 2i + 1 
the transfer function  has the following form: 
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In the case of the filter with possible linear phase the 
characteristic of the group delay D(ω) is very useful. The 
group delay is defined by the derivative of the phase 



characteristics ϕ(ω) with regard to the pulsation ω with the 
minus sign: 
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For the N-th order Butterworth filter the group delay can be 
expressed as follows: 

1
)(

2
0

2
1

)2(2
2

)1(2
1

+
++++

=
−

−
−

−
N

N
N

N
N

N

aaaa
D

ω
ωωωω K          (7) 

The Taylor expansion of the above mentioned function 
round about ω = 0 has the following form: 
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The group delay of the second order phase shifter given by 
(3) has the following form: 
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The Taylor expansion of the group delay of the second order 
phase shifter round about ω = 0 has the following form: 
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The sum of both group delay expansions can be written as 
follows: 
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Parameters Q and ω0p should be selected in this way in order 
to eliminate the term of the second and fourth order of 
DG(ω)+DH(ω). For this purpose it is necessary to solve a 
suitable system of equations as follows: 
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All important parameters of phase-compensated Butterworth 
filters from 3-rd up to 6-th order are presented in Table 1. 

Table 1. Parameters of phase-compensated Butterworth filters from 3-
rd up to 6-th order. 

N ω0p Q tu [s] tuc [s] 

3 1.0232 0.5509 5.9654 7.0927 

4 1.0955 0.5434 6.8523 9.5853 

5 1.0813 0.5406 7.6572 10.5104 

6 1.0521 0.5389 10.7680 11.3863 

where tu is the settling time of the original filter but tuc is the 
settling time of the filter with equalized group delay re-
sponse. 

The comparison of group delay characteristics of the 4-th 
order original filter and the phase-compensated Butterworth 
filter is shown in  figs. 1 and 2. 
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Fig. 1.  Group delay response of  the 4-th order original Butterworth 

filter.  
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Fig. 2.  Group delay response of  the 4-th order phase-compensated 

Butterworth filter.  

How one can notice, the compensation of the group 
delay characteristics brings good results, because compen-
sated characteristics is considerably more flat in the filter 
pass-band than in the original Butterworth filter. The group 
delay value of the phase-compensated filter is obviously 
greater than in the original filter, however this value does 
not play a greater part. For the systems from impulse 
technique the important feature is constancy of the group 
delay in the filter pass-band. Compensation of the group 
delay was carried out at the cost of the extension of the filter 
transient state. 

3.   TIME-VARYING COEFFICIENTS  

For constant parameter filters there are only small 
possibilities of shortening the transient state and this is 
because the filter parameters are calculated on the base of 



the assumed approximation method of the frequency 
characteristics (phase or gain) which guarantees that the 
frequency specifications are satisfied without taking into 
consideration the character of the transient state.  The 
possibility of improvement of the filter properties is 
provided by varying in time their parameters. Analysis of 
parametric systems is much more complicated and the 
number of works on this subject is rather low. Only very 
specific types of parametric differential equations can be 
solved analytically. However the development of modern 
simulation techniques makes examination of parametric 
systems possible. The paper shows that it is possible to 
shorten the transient state in low-pass analog filters by 
varying in time selected parameters. 

The indeterminacy principle says that it is not possible to 
achieve a shorter rise time of the low-pass filter output 
signal when the filter pass-band is constant. One can obtain 
significant changes of duration of the transient state by 
variation of filter band-pass in low-pass filters. This 
procedure is connected with the change of value of 
parameters ω0, β and T which leads to non-realization of the 
imposed filter frequency characteristics.  

Time varying filter design is the result of modeling of 
system of ordinary differential equations with varying 
coefficients described as follows: 
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where:  
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In the case of odd filter order a1(t) = 0 and b1(t) = T(t). 
Dynamic properties of arbitrary low-pass filter can be 

described by means of the damping factor βi, characteristic 
frequency ω0i and time constant T (only in the case of odd 
filter orders).  

Let's assume, that all those parameters belong to certain 
set: 
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Next, let's create the set F(t) of filter coefficients 
functions: 
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The main assumption which was imposed on functions from 
set F(t) is the necessity of settling these functions during the 
transient state of the original time-invariant filter. This 
condition can be written as follows: 
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where: tuα - settling time of a constant parameter filter with 
an accuracy of α. Relation (16) is responsible for keeping 
frequency assumptions of designed time-varying filter.  

The introduction of time-varying parameters requires 
examination of the stability of the systems with element 
containing varying parameters. Paper [6] present the proof 

of a theorem saying that if for the 2-nd order system the 
functions ω0i(t) and β(t) have the same sign and: 
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then stability can be determined in the same manner as for 
time-invariant systems. It allows us to claim that if the filter 
structure contains elements with varying parameters, then 
for the time going to infinity the values of varying 
parameters converge to limit values following from the 
Butterworth approximation and the filter stability can be 
examined as in the time-invariant case. Since the 
Butterworth approximation guarantees stability of time-
invariant filter one can skip the stability issue for the 
parametric filter.  

In order to shorten the filter transient state one assumes 
functions from set F(t) as follows: 
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where: F - value of parameter from set F following from the 
Butterworth approximation, d - variation range of the fun-
ctions from set F(t) described by the relation: 
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Function h(t) describes the step respond of the second 
order system: 
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where: βf is the parameter which determines oscillations of 
functions from set F(t), ω0f  is the parameter which dete-
rmines the range of the speed of above-mentioned functions, 
and L-1 is the inverse Laplace transform. 

 The best results in shortening the transient state of 
phase-compensated Butterworth filters were obtained while 
parameters ω0i and 1/T were varied according to the same 
function F(t). Fig. 3 presents responses to the noised 
rectangular input signal for the original Butterworth filter 
and the phase-compensated time-varying Butterworth filter. 
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Fig. 3.  Filter responses to the noised rectangular input signal. 

 



4.  CONCLUSION 

As it has been proven, application of time-varying 
coefficients in the low-pass phase-compensated Butterworth 
filters causes considerable shortening of the settling time. 
The best results of shortening of the settling time were 
obtained by varying in time the characteristic frequency ω0i 
and the inverse of the time constant T according to the same 
function. It seems that further examinations of time-varying 
Butterworth filters are needed.  Especially, the problems of 
optimal selection of variation range and the speed range of 
functions are open. Nevertheless already this paper proves 
possibilities and practical usefulness of the proposed filter 
concept as a signal processing instrument. 
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