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Abstract: The paper deals with mathematical fundamentals 
of  the  generalized nonsubtractive dithering method (which 
can be used in A/D converters and sampling systems with 
repetitive sampling). The new concept is based on inverting  
a "dithering  characteristic" F  defined in the paper for 
arbitrary (but fixed) quantization functions. Errors of  the 
method are assessed  and  analyzed  in  detail. 
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1.INTRODUCTION 

It is well known (see [1-4]) that dither (i.e. noise purposely 
added to  the converted input voltage)   can improve 
accuracy of  A/D converters. In general dithering methods 
are divided into two categories: a) subractive dither (when  
we subtract dither realization after quantization) and b) non-
subtractive dither (when  we do not subtract dither 
realization after quantization). The paper deals only with the 
non-subtractive dither. 
 
  In the paper we try  to assess errors and accuracy of the 
classical dithering method and  we propose  a generalized 
dithering method.  The essence of the new approach consist 
in averaging and inverting a "dithering characteristic" 
(defined in the sequel). 
 
    Every constant inside intervals, real function of a real 
variable  is called a quantization function. 
From electronic engineering point of view the quantization 
function is a static input/output characteristic of an 
electronic circuit (with one or more comparators)  called a 
quantizer. It is worth to underline that in the sequel 

 does not have to be a uniform quantization 
function. Let D  be  a real random variable describing dither. 
Assume D is defined on a probabilistic space 

RRQN →:

RRQN →:

),,( PΩ  
and  for every . A function 

 given for every 
),,()( 1 PLDaQN Ω∈+ Ra ∈

RRF →: Ra ∈   with the formula (1) is 
called a "dithering characteristic" in the paper.  is a 
probability distribution of the random variable D .  

DP

 An exemplary  dithering characteristics is shown in the Fig. 
2  (the dither distribution is Gaussian with the mean value 0 

                 (1) ∫ +=+=
R

D

df
dxPxaQNDaQNEaF )()()(()(

and a standard deviation  x 1.0 Δ=σ , quantization function is 
uniform with V 1=Δx ). In the section 2 of the paper we 
assess properties of  this  function. In particular we prove 
that under natural assumptions the function  F  exists, is 
continuous and is strictly monotonic increasing (see Fig.1). 
The crucial property for our aims is possessing an inverse of  
the dithering characteristic. Some particular examples of 
dithering characteristics are given in the section 2. 

   A simplified block diagram of the circuit for  
measurement (i.e. A/D conversion) with  generalized 
dithering method is shown in the Fig. 1. The dither D  is  
added to the  measured input voltage  a  and then  the sum   
a + D  is quantized. The procedure is repeated  N0  times. 
Then quantized samples are averaged.   The last step is 
correction of  the average with the dithering characteristic  
F.  Finally  we obtain a random variable A(N0) which  is an 
estimator of the value  a. 
 
 
 
a                                                             QN(a+D)                                    
 
 
                                                                                                                  A(N0)       
              D 
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Fig.1.  Addition of the dither  D  in  the A/D  conversion system,   
 
 
   The section 3  deals with  generalized dithering methods. 
It is worth to underline that the method works for a large 
class of quantization functions  and dither 
distributions .  The section 4 is devoted to errors and 
accuracy of  the dithering methods. We finish the paper with 
some conclusions. 

RRQN →:

DP
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2. FUNDAMENTAL PROPERTIES OF DITHERING 
CHARACTERISTICS  
 
 In the section we give some basic properties of   the 
dithering characteristic defined in the section 1. We would 
like to know if  the dithering characteristic is monotonic 
increasing, strictly monotonic increasing or  continuous.   
 
    Every constant inside intervals, monotonic increasing real 
function of a real variable  is called a 
quantization function. More precisely, we assume in the 
definition that we have a sequence   of intervals 

 that for every 

RRQN →:

ZiiI ∈)(
RIi ⊂ Zi ∈ and  we have 

 and U  and there is a real number 
iIx ∈

.)( constxQN =
Zi

i RI
∈

=

0>ε  that for every  we have Zi ∈ ε>)(1 iIl , where  is 
a Lebesgue measure on R. Additionally we assume that for 
every ,  

1l

Zji ∈, ji ≠  we have  and  there 
exist two points  that  . 

∅=∩ ji II
Rxx ∈21 , )()( 21 xQNxQN ≠

 
Theorem 2.1. Assume  is a quantization 
function. If  a random variable  D  has the mean value  i.e. 

  then 

RRQN →:

),(1 PLD Ω∈
 
 1) for every  there is the mean value Ra ∈ ))(( DaQNE +  
(then the dithering characteristic is well defined)  
 
2) a dithering characteristic is always   a monotonic 
increasing function  
 
Proof.  see [3] ■ 
 
    Properties 1) and 2) are independent from  the distribution 
of the random variable  D describing dither, the distribution 
can be for example discrete, continuous or  have  an 
arbitrary type of  the distribution. In particular  
can be a uniform quantization function. 

RRQN →:

 
Theorem 2.2. Let   be  a  quantization function. 
If a random variable  D  has the mean value  i.e.  

  and  has a density function  then  

RRQN →:

),(1 PLD Ω∈
 
1) for every   there   is a mean value Ra ∈ )(( DaQNE +  
 
2) the  dithering  function    
 

        RDaQNEaFaR ∈+=→∋ )(()(
 
 is continuous and monotonic increasing. 
 
Proof.  see [3] ■ 
 
Theorem 2.3. Assume  is a uniform 
quantization function. If  a random variable  D  has the mean 
value i.e.   and  has the density function  

 such that for every 

RRQN →:

),(1 PLD Ω∈

),( 1
1 lRLf ∈ ]

2
1,

2
1[ xxx ΔΔ−∈   ( xΔ  

is   a parameter of the quantization function)  we have 
 then  0)( >xf

 
1) for every Ra ∈   there is a mean value  )(( DaQNE +  
 
2) dithering characteristic    
 
               RDaQNEaFaR ∈+=→∋ )(()(   
is  continuous and strictly monotonic increasing  
Proof.  see [3] ■ 
    
     For the given quantization function  and 
probability distribution of the random variable D we can 
compute values of  the  dithering characteristic  
with arbitrary accuracy.  

RRQN →:

RRF →:

 
   For simplicity reason we assume in the sequel that 

 is a uniform quantization function. defined with  

the formula  

RRQN →:

⎥⎦
⎥

⎢⎣
⎢ +
Δ

Δ= 2/11)( x
x

xxQN  where  0>Δx  It is 

easy to note that  )2/]2/([)( xxxxxQN x Δ−Δ+−= Δ  then 
the quantization function is a sum of a linear function 

 and a periodic function  RRid →:
RxxxRR x ∈Δ−Δ+−→∋ Δ )2/]2/([  with a period xΔ .  

Therefore the value of the dithering characteristic  F(a) is 
equal to 
 

             
2/]2/([)(
2/]2/([)(

)(()(

xxDaEDEa
xxDaEDaE

DaQNEaF

x

x

Δ+Δ++−+=
=Δ+Δ++−+=

=+=

Δ

Δ  

 
then  the function F  is also composed from the linear part 
and the periodic part  with a period  xΔ . Then for 
computation of the dithering characteristic F,  it is sufficient 
to know only the following function  
 

   )]2/([]2/,2/[ xxDaEaxx ΔΔ++→∋ΔΔ−  
 
   In practice linearity (or nonlinearity) of the dithering 
characteristic is important.  Nonlinearity of the dithering 
characteristic   F  (under assumption of  the continuous 
differentiability F  on the real axis R)  can be defined as a 
number  . )(inf)(sup '' xFxF

RxRx ∈∈
−

It can be easily seen that : 
 

)(inf)(sup

)(inf)(sup)(inf)(sup

'

]2/,2/[

'

]2/,2/[

'

]2/,2/[

'

]2/,2/[

''

xgxg

xFxFxFxF

xxxxxx

xxxxxxRxRx

ΔΔ−∈ΔΔ−∈

ΔΔ−∈ΔΔ−∈∈∈

−=

=−=−

 
where g  is  a periodic component  of the dithering 
characteristic.  
 
  There are  some easy to analyze  particular cases  of  
random variable D probability distributions. 
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Example 1. If  dither is described with the Dirac measure 
concentrated  in the point  0 then the dithering characteristic  
F  is equal  to a  quantization function i.e. )()( xQNxF =  
for every . If  dither is described with the Dirac 
measure concentrated  in the point   then the dithering 
characteristic  F  is given for every  by the formula 

. As a result the dithering characteristic is 
a monotonic increasing function but is not continuous.■ 

Rx ∈
Rb ∈

Rx ∈
)()( bxQNxF +=

 
Example 2. If a random variable D has  a discrete  
distribution  concentrated  on  a  finite number of points then 
the dithering characteristic F  is  a monotonic function, 
constant inside intervals but not continuous. ■ 
 
Example 3. If a random variable D has  a density  f   such 
that   is  a subset of  the closed interval 

, where  , 
f supp

],[ 21 bxkbxk +Δ+Δ− +∈ Rkk 21 , Rb ∈  and  

2
1,0 21 << kk  then  the  dithering characteristic is 

continuous but  constant on a number of intervals. Thus it is 
not invertible.■ 
 
Example 4. If a random variable D has  a uniform 
distribution  then dithering characteristic is continuous,  
monotonic increasing and linear inside  intervals  or linear. 
■ 
 
Example 5. If  D has a uniform distribution  on the interval  

]
2
1,

2
1[ bxkbxk +Δ+Δ−  for fixed   and Nk ∈ Rb ∈   then  

the dithering characteristic is given for every  Rx ∈  by the 
formula .  In particular if  D has a uniform 

distribution  on the interval  

bxxF +=)(

]
2
1,

2
1[ xkxk ΔΔ−  for fixed  

 then  the dithering characteristic is linear  i.e. 
 for every  .  ■ 

Nk ∈
xxF =)( Rx ∈

 
Example 6.  If  D has a probability distribution  f given by a 
formula  

∑
+∞

−∞=
ΔΔ−

=
k xkxkkxf

]
2
1,

2
1[

)( χα  

 

(where  and  +∈ Rkα
]

2
1,

2
1[ xkxk ΔΔ−

χ  is a characteristic 

function of the set   ]
2
1,

2
1[ xkxk ΔΔ− )   then the dithering 

characteristic is linear  i.e.  for every  xxF =)( Rx ∈ .  

Then a uniform distribution on the interval ]
2
1,

2
1[ xkxk ΔΔ−  

for fixed   is not a unique type  of  distribution giving  
a linear  dithering characteristic. ■  

Nk ∈

 
Example 7.  If  D has a probability distribution  f given by a 
formula  

∑
+∞

−∞=
+Δ+Δ−

=
k bxkbxkk

kk
xf

]
2
1,

2
1[

)( χα  

 

where , +∈ Rkα Rbk ∈  and 
]

2
1

,
2
1

[ kk bxkbxk +Δ+Δ−
χ  is a 

characteristic function of the set ]
2
1,

2
1[ kk bxkbxk +Δ+Δ−  

then   there exists  Rb ∈  that the dithering characteristic is 
given for every  Rx ∈  by the formula bxxF +=)( .   ■ 
 
   It follows from our computer simulations the following, 
intuitively clear conclusion: "larger dither"  gives a "more 
linear"  dithering characteristic F.   This rule does not work 
always  but is useful from practical point of view. 
 
On  Fig. 2-4  some exemplary  dithering characteristics are 
shown . 
 

 
   
Fig. 2. Exemplary  dithering characteristic when the dither distribution 
is Gaussian (with the mean value 0 and the standard deviation   
σ=0.1Δx) . Quantization function is uniform with  Δx=1V. 
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Fig. 3. Exemplary  dithering characteristic when  the dither 
distribution is uniform on the interval   ]1.0,1.0[ xx ΔΔ−     .   

Quantization function is uniform with Vx   1=Δ . 

 
 
Fig. 4. Exemplary dithering characteristic  when   the dither 

distribution is uniform on the interval ]
2
1,

2
1[ xkxk ΔΔ−  for  k=5.5. 

Quantization function is uniform with Vx   1=Δ . 
 
 
3.GENERALIZED DITHERING METHOD   
 
   Assume  that  a random sequence  is  a sequence 
of independent (or stationary in the strict sense) random 
variables  with the same one dimensional probability 
distribution  as the random variable  D. The sequence 

 describes the process of  dither addition as a 
sequence of independent (or stationary in the strict sense) 
experiments. We assume that 

∞
=1)( nnD

∞
=1)( nnD

1DD =  and 

). In this case we have of course  

 for every 

),(1 PLD Ω∈

),(1 PLDn Ω∈ Nn ∈ . Hence for every Nn ∈  

and every  we obtain  and 

.  

Ra ∈ ),()( 1 PLDaQN Ω∈+

),()( 1 PLDaQN n Ω∈+
 
Additionally assume, that the  dithering characteristic 

 (see section 2)  is continuous and  strictly 
monotonic increasing. Hence  is invertible.  

RRF →:
RRF →:

 
  We can  compute values of  F   with arbitrary accuracy 
computing  values of  the periodic component  of  the 
function  F . To be exact we have to compute values  only 
on  the interval  which has the length equal to the period of  
the periodic component .  
 
 The generalized dithering method  is simple. We know the 
dithering characteristic  for a given distribution 
of the random variable D and  we take    values    

RRF →:
0N

 
))((),.....,)((),)((

021 ωωω NDaQNDaQNDaQN +++     (2) 
 

where Ω∈ω  is an elementary event. Then we compute the 

mean value   )()(1 0

10

ω∑
=

+
N

n
nDaQN

N
.  A finite sequence  (2) 

is composed of    independent realizations of the random 
variable  

0N
)( DaQN +  or in other words   first 

coefficients  of  the trajectory of  the stochastic process  
.   

0N

∞
=+ 1))(( nnDaQN

 
Using  Strong Law of Large Numbers   we obtain that  P   
almost everywhere  if   then ∞→0N

       )(()()(1 0

10

DaQNEDaQN
N

N

n
n +→+∑

=

ω               (3) 

 
i.e. P  almost  everywhere  if  then we have    ∞→0N

       )()()(1 0

10

aFDaQN
N

N

n
n →+∑

=

ω           (4)  

 
  Because the function   (as strictly monotonic 
increasing and continuous)  is invertible and an inverse 
function   is  continuous   then from  (4)  we 
have  P  almost everywhere:   if    then 

RRF →:

RRF →− :1

∞→0N

     aaFFDaQN
N

F
N

n
n =→+ −

=

− ∑ ))(())()(1( 1

10

1
0

ω      (5) 

 
As an estimator of the value a  we can admit  

))(1()(
0

10

1
0 ∑

=

− +=
N

n
n

df
DaQN

N
FNA       (6) 

 
An estimate of the value  a is then computed as  a realization 
of  the random variable   i.e. )( 0NA

     )))((1())((
0

10

1
0 ∑

=

− +=
N

n
n

df
DaQN

N
FNA ωω      (7) 

 
 The formula  (5)  says that the estimator (7)  is strong 
consistent . From the  convergence  P  almost everywhere   
it follows the asymptotic convergence of  random variables 
(i.e. convergence  in probability).  In our case it means that 
if  +∞→0N  then the convergence P  almost everywhere  

 implies the convergence    in 
probability.  Then we can say:   for every 

aNA →)( 0 aNA →)( 0

0>ε  and every   
0>δ  there is such  NN ∈0

~  that   for every 00
~NN ≥  we 

have 
δε ≤≥− ))(( 0 aNAP         (8) 

 
   In short, the answer  about  the value a is  the following:   
a  (a final result of the measurement) is in fact a realization 
of the random variable . )( 0NA ))(( 0 ωNA  is an estimate of 
the value  a.   It is exactly the same case as parameter 
estimation in mathematical statistics.  The inequality  (8) 
gives a good intuitive description of  the  "practical value" 
of  the estimate ))(( 0 ωNA . 

 4



 
 We can obtain  the classical dithering method as a special 
case of the described above generalized dithering method. 
 
If the random variable D describing  dither has the uniform 

distribution on the interval ]
2
1,

2
1[ xkxk ΔΔ−  for fixed Nk ∈  

then the dithering characteristic  is linear i.e. xxF =)(  

because  under these assumptions    and 
we have  

),(1 PLD Ω∈

aDaQNE =+ )((          (9) 
 
  In this situation we have not to compute the inverse of the 
function F.   The formula  (9)  is the essence of the classical 
dithering method. The equality (9) can be understood in the 
following way:  averaging of samples cancels nonlinearity 
of  the quantization function QN   in the formula  (9).  
 
 Finally in the classical dithering method  we take as 

))(( 0 ωNA  (an estimate of the value   a) the average i.e.  

∑
=

+=
0

10
0 ))((1))((

N

n
nDaQN

N
NA ωω       (10) 

 

Comment.  All over the paper we assume that  is a 
sequence of independent random variables with the same 
probability distribution. The dithering method works 
correctly also in the more general case  when  a sequence   

 is a sequence of  real random variables stationary in 

the strict sense. In both cases we assume that  
fulfills the additional condition:  for every  we have 

.  

∞
=1)( nnD

∞
=1)( nnD

∞
=1)( nnD

Nn ∈
),(1 PLDn Ω∈

 
  Asymmetry  of  the random variable D  distribution  causes 
errors in the classical dithering method.  In generalized 
method it  is not important because we correct these errors 
by  inverting the dithering characteristic F.   But in both  
dithering methods true information about a distribution  
of  the random variable D describing  dither  is a crucial 
point for accuracy. 

DP

 
  When we do not use the true  distribution of  the random 
variable  D (in dithering characteristic computations) it  
introduces usually a systematic error of  the method.   
 
  Assume   and   are continuous and strictly monotonic 
increasing dithering characteristics.  denotes  a true  
dithering characteristic, and   an admitted dithering 
characteristic. 

1F 2F

1F

2F

 
  For a systematic error of the method we can take a number  

  but as a rule a is 
unknown then more convenient solution is taking  as a  
systematic error (denote it by 

aaFFaFFaFF −=− −−− ))(())(())(( 1
1

21
1

11
1

2

0δ )  an assessment done  in 
the following way 

 
           )()(sup 1

1
1

20 xFxF
Rx

−−

∈
−≤δ . 

   We would like to prove the fact   "if distributions of two 
random variables kD  and  D describing dither are 
sufficiently  "close"  then  dithering characteristic  and  F  

(for 
kF

kD  and D appropriately) are close too". The situation is 
explained  by the following theorem". 
 
Theorem 4.1 Assume a random variable    
has a probability density  and for every   

),(1 PLD Ω∈
Nk ∈ , 

  and  a sequence   is  a uniform 

integrable family of random variables.  If      
converges weakly  when    then 

),(1 PLD k Ω∈ ∞
=1)( k

kD

DD k →
+∞→k

 
1) for every Rx ∈ ,   when  )()( xFxFk → +∞→k  (point 

convergence),  where   is   a  dithering characteristic for 

the random variable 
kF

kD  and  F  is a dithering characteristic 
for the random variable D. 
 
2) if  for every Nk ∈   the random variable  kD   has a 
density  (related to the  Lebesgue measure  on the real axis) 
then  uniformly   when . FFk → +∞→k
Proof.  see [3] ■ 
 
Comment 1. Assumption of  weak convergence  is not an 
especially restrictive assumption. If     P  almost 
everywhere  when ,  or  in probability   
or   in the norm of  (where )   

then  converges weakly  when 

DDk →
+∞→k DDk →

DDk → ),( PLp Ω 1≥p

DDk → +∞→k .■ 
 
Comment 2. There are many natural examples of uniform 
integrability. For instance a sequence   is a family of 
uniform integrable random variables  if  there is such  a 
bounded interval , that  for  every  

∞
=1)( k

kD

RI ⊆ 1)( =IP kD
Nk ∈ .   

  Another example,   if   where   

and  converges in   when 

),( PLD pk Ω∈ 1≥p

DDk → ),( PLp Ω +∞→k  to 

a random variable    then a family of 

random variables   is  uniform integrable.■ 

),( PLD p Ω∈
∞

=1)( k
kD

 
 
5.SPEED OF CONVERGENCE  OF THE ESTIMATOR   

 TO THE MEASURED VALUE    a )( 0NA
 
  Assume the assumptions  of the section 4 (concerning the 
random variable D which describes dither)  are fulfilled. 
Assume additionally that,  (equivalently 
we can say that there is  a variance of the random variable 
D).  From results of  the section  2  we have  

 and there is a variance 

. 

),(2 PLD Ω∈

),()( 2 PLDaQN Ω∈+

))((2 DaQND +

 5



 
As a value of  the measured  voltage a we admit  a number: 
 

)))((1())((
0

10

1
0 ∑

=

− +=
N

n
n

df
DaQN

N
FNA ωω       (11) 

 
  Quality of the estimator  (i.e. its errors) can be 

assessed with the variance  . As will be proved 

in the sequel the variance  can be assessed  with 
a sequence which tends to 0 when 

)( 0NA

))(( 0
2 NAD

))(( 0
2 NAD

 +∞→0N . Therefore  
we can control the value of the variance  (increasing number 

) and taking  suited to the needed accuracy.  0N 0N
 
  As was proved in the section 4 it follows from Strong Law 
of Large Numbers  that  aNA →)( 0 when   +∞→0N (P 
almost everywhere) and also  aNA →)( 0 (in probability)    
(which is  in electronic measurement practice is more 
intuitive), see the inequality (4.7). 
 
 The inequality  (8) does not tell us how to choose 0N    for 
an acceptable level of accuracy.  Such a mechanism gives 
the Chebyshev   inequality  (see appendix). From  the 
Chebyshev   inequality  we obtain  that  for an  arbitrary  

0>ε   we have 

2
0

2

0
))((

))((
ε

ε
NAD

aNAP ≤≥−        (12) 

 

  If   we prove  the convergence   when 0))(( 0
2 →NAD

 +∞→0N then  we will be able to control accuracy  of  
estimation by  choosing appropriate   . 0N
 

  We can easily assess the variance  assuming 
that the dithering characteristic F  is continuously 
differentiable on  R   and   for every 

))(( 0
2 NAD

0)(' >xF Rx ∈  (then  

F  is strictly monotonic increasing). Denote .  

We have in this situation  

)(inf '
0 tFA

Rt

df

∈
=

0)(inf1)(inf)(inf '

]2/,2/[

'

]2/,2/[

'
0 >+===

ΔΔ−∈ΔΔ−∈∈
tgtFtFA

xxtxxtRt

df
,  

 
where  g  is  a periodic component of the dithering 
characteristic.  In the case of classical dithering method we 
have .  10 =A

≤+= ∑
=

− )))(1(())((
0

10

12
0

2
N

n
nDaQN

N
FDNAD

 =+≤ ∑
=

))(1(
0

100

2
N

n
nDaQN

NA
D

)((1))((1 2

0
2
01

2
2
0

2
0

0

n

N

n
n DaQND

NA
DaQND

NA
+=+= ∑

=

 

 

  Thus  the assessment of  the variance   is 

inversely proportional  to  and   when 

))(( 0
2 NAD

0N 0))(( 0
2 →NAD

 +∞→0N .  The obtained result can be formulated  in this 
way: "accuracy of the dithering method  is proportional to 

0N ". 
 

5.   CONCLUSIONS 

1. It is possible to generalize  the classical   dithering  
method  for wide class of  dither D probability distributions  
and quantization functions  QN (we can use for instance a 
uniform quantization function or a two level quantizer with 
saturation). 
 
2.A dithering characteristic F is very useful notion. It  
allows assessment of  the accuracy of  the classical and 
generalized  dithering  methods. In particular we can easily  
assess systematic errors  of  the methods.  
 
3. Accuracy of generalized dithering methods depends on 
accuracy  of the generated  distribution  of  the random 
variable D . In practice real distribution of  the random 
variable D can differ from admitted one.    
 
4. Random changes  of  comparison levels  of the quantizer   
can be treated   as  dithering and can  be  in natural way 
taken into account  in the generalized dithering method. 
But non accurate identification  of  the random variable  L  
(describing fluctuations of  the comparison level of the 
quantizer) can also influence accuracy of measurements. 
 
5. Under natural assumptions on the dither D,  the variance 

  of  the estimator   (of  the measured  
voltage   a)  is inversely proportional  to ,  where    is  
a number of  averaged samples.  

))(( 0
2 NAD )( 0NA

0N 0N

 
6. From many computer simulations  it follows an 
intuitively clear conclusion:  "greater dither" gives  “more 
linear” dithering characteristic  F.  This rule does not work 
in general  but is useful from practical point of view.  
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