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Abstract: In paper, an algorithm for fast measurement and 
estimation of power system frequency is presented. The 
frequency is calculated by an interpolation of the amplitude 
coefficients of the discrete Fourier transform (DFT). An 
analysis is made to study the influence of the leakage effect 
when the rectangular window and the Hanning window are 
used. Interpolations with longer time of measurement and 
with larger number of points decrease the systematic errors. 
The proposed method achieves accuracy in measuring the 
frequency under a hundredth of hertz. 
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1.   INTRODUCTION 

The variable fundamental frequency is the most 
important parameter for the safety, stability and efficiency 
of the power system. Deviation of the power-line frequency 
from its stationary value is a measure of the imbalance 
between the load and generation. Frequencies lower than the 
nominal value indicate that the system is overloaded and 
frequencies higher than the nominal value indicate that the 
system has more generation than load. It is necessary to 
maintain the frequency of the power system at its nominal 
value ( Hz50  in Europe and Hz60  in the United States, 

etc.), or as close as possible to that value. There are the 
average drift of the system frequency and superimposed 
frequency oscillations. Regular power-line frequency 
variations are %5.001.0 − , but under emergency conditions, 

they may reach %2  and more. Several methods for tracking 

and estimating the actual power-line frequency can be 
divided in two main groups: methods that are performed in 
the time domain as level crossings methods etc. [1-3], and 
methods of frequency estimation in the frequency domain 
using discrete and fast Fourier transforms (DFT and FFT) 
[4-6]. The measurement time in the first group varies from 

ms25  to ms30  and maximal values of errors are around 

Hz02.0 . The second group methods perform the 

measurements in an integer multiple of the fundamental 
period ( ms,60,40,20m K=T  in Hz50  system) and the 

estimation error in measuring the frequency is about 
Hz01.0 . Real measurement procedures are often 

encountered with noise components (quantization and 

thermal noise, switch noise etc.) and harmonic distortions. 
In these cases some averaging and prefiltering algorithms of 
measurement signals (interpolations of the time samples, 
integration by the DFT, etc.) are performed. However, all 
such methods involve a compromise between the accuracy 
of the frequency measurement and the length of the 
observation period; accuracy decreases, as the period 
becomes smaller. 

2.   FREQUENCY ESTIMATION BY IDFT 

In this paper, an algorithm for fast measurement and 
estimation of the power system frequency is presented. The 
algorithm uses discrete time values of the input signal 
sampled t∆  apart. The sampled analog multi-frequency 
signal ( )tg  ( N  is the number of sampled points; m  is the 

index of component) can be written as follows: 
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In order to estimate parameters of time dependent signals 
containing any periodicity (mf , mA , mϕ  are frequency, 

amplitude, and phase of a single component, respectively) is 
most suitable to use the frequency domain. Integral 

frequency transformation with ftje π2−  is in principle the best 
approximation to periodicity in the signal. The key step of 
the frequency estimation is the determination of position of 
the measured component mδ  between the DFT coefficients 

( )iG  and ( )1+iG  surrounding the component (Fig. 1).  

The DFT of the windowed signal ( ) ( )kgkw ⋅  at the 

spectral line i  is given by [7]: 
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where ( )∗W  is the spectrum of the used window and mθ  is 

the frequency divided by the frequency resolution of the 
time window ( )tNf ∆=∆ /1  and can be written in two parts: 
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where mi  is an integer value of the first approximation and 

the displacement term mδ  is caused by the non-coherent 

sampling. 
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Fig. 1. Leakage influence of the negative part of the sinus spectrum 
with rectangular window at the positive part of the spectrum ( 6=mi ) 

The amplitude coefficients surrounding one component 
in the signal  (Fig.1) are composed of the short-range 
leakage contribution of the window spectrum weighted by 
the amplitude of the frequency component and the long-
range leakage contribution of the negative part considering 
only one-component signal. 
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At a first approximation, we can idealize circumstances 
for displacement mδ  estimation of a single component and 

in the equation (4) neglect the second part and long-leakage 
contributions of other signal components. That means in 
practice we have been measuring long enough or the 
frequency components are sufficiently interspaced. 

2.1   Stationary case  

The frequency of the measured component can be 
estimated by means of an interpolation of the DFT 
coefficients. For two-point interpolation the local maximum 
in the amplitude part of DFT with the largest coefficients 

)(iG  and )1( +iG , surrounding the position of component 

m , have to be found. Considering the equation (4), we can 
write as follows: 
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The unknown amplitude mA  can be easily eliminated by 

ratio of coefficients. 
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If the function )(θW  of window used is analytically 

known, the ( )mm f αδ =  can be expressed (In paper, well 

known rectangular and Hanning windows are used). For the 
rectangle window, the following equations are valid, where 
the amplitude part of Dirichlet kernel is used [8]: 
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or expressed by the DFT coefficients: 
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The sign of displacement ( )ms δδ sign= can be estimated 

with the absolute value of the difference of the phase DFT 
coefficients ( )[ ] ( )[ ]( )21argargsign= πδ −+− mm iGiGs . 

This approach is much less sensitive to systematic errors and 
noise than a well-known approach with the difference of the 
coefficients surrounding the largest one ( )miG : 

( ) ( )( )11sign −−+= mm iGiGs .  

For the Hanning window, it can be written as follows: 
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In both cases in denominator ( ) NxNx ππ ≅sin  is taken 

into consideration because 5.0≤mδ  and N  is usually large 

1>>N  ( K,1024,512,256=N ). The error of this 

approximation decreases even more in the quotient. By the 
ratio mα  not only the amplitude is eliminated but in 

presented cases the unwanted sinus function in numerator as 
well. 



For the three-point interpolation the long-range leakage 
influences can be equalized in the quotient mα  in 

approximation ( ) ( ) ( )11 +∆≈∆≈−∆ mmm iii  and with 

subtraction eliminated by pairs [9]. 
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When the Hanning window, for which the spectrum is 

analytically known ( ( ) ( ) ( )2
1H 1sin θπθπθθ −=

>>N
W ), is 

used, all three coefficients of the maximum have the same 
sign (the main lobe is extended to four frequency resolution 
intervals f∆4 ) and it can be expressed as: 
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The displacement term can be expressed with quotient 

H3 mα  or with amplitude coefficients from (9): 
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For the rectangular window (the main lobe is extended 
only to two frequency resolution intervals) the equation can 
be rearranged in the following form: 
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We checked the error of the frequency estimation 
( ) ( ) θδθ −+= iE  (θ  is the true value of the relative 

frequency) for one sinus component in the signal with 
double scan varying both frequency and phase (1=mA ; 

( )3,202.198.0 ⋅⋅≤≤ θ , 0001.0=∆θ  and 22 πϕπ ≤≤− , 

180πϕ =∆ ; 1024=N ). The absolute maximum values of 

errors (from 181 iterations) at the given relative frequency 
were compared for two-point (7c) and three-point 
interpolation (11) with the rectangular window and with the 
Hanning window for two-point (8c) and three-point 
interpolation (10) (Fig. 2). 

As a rule the power-line frequency is measured in the 
time multiple of the fundamental period for eliminating the 
harmonic interference. At the one-period observation time, 
we can use a three-point interpolation with the rectangular 
window or a two-point interpolation with the Hanning 

window (Fig. 2a.: II or III). At the two-period time is better 
to use the Hanning window (Fig. 2b.: III or IV), and at the 
three-period observation time the best results are with 
Hanning window and the three-point interpolation (Fig. 2c.: 
IV). This interpolation automatically adds the sign of 

displacement and the error band is around ( ) 4
max

10−≈θE . 
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Fig. 2. Maximal absolute errors of the frequency estimation with 

interpolations of DFT for the rectangular window (I - two-point and II 
- three-point) and the Hanning window (III - two-point and IV - three-

point) 

2.2   Non-stationary conditions 

The selection of an algorithm ((7c), (8c), (10) or (11)) 
for the frequency estimation in the non-stationary 
circumstances has following requirements: reducing the 
time of measurement, that the estimated average frequency 
could be as close as possible to the instantaneous frequency; 
the relative frequency should be close to the integer values 
( 3or2,1=i ) to reduce the leakage influences of the other 

harmonic components; reducing the noise; robustness etc. 
The optimum for upper requirements can be the estimation 
with the two-point interpolation and the Hanning window 
(8c). The Hanning window has good capability of filtering 
the harmonic interferences [10]. In fact, the rectangular 
window function would exhibit a heavier bias in the 
frequency estimation due to the scallop loss while other 
windows (like higher order cosine windows) exhibit a larger 
main lobe and a worse tone resolvability. 

The two-point interpolation using Hanning window has 
the following properties: the sign of displacement is 



expressed implicitly; it uses only two coefficients and the 
noise is smaller than with the three-point interpolation; if the 
second and the third harmonic component are not in the 
signal than it can be used at 1≈θ ; if it is used at 2≈θ , 
only the second harmonic component should not be in the 
signal because the spectrum main lobe is too wide (f∆∝ 4 ). 

The coherence can be improved also with the averaging 
of the estimation results at two widths of the measurement 
interval: aN  is the number of points where the number of 

oscillation of more than two is reached for the first time 
( ) f2 aa ∆+= δf , 0a ≥δ ; with 1a −N  width, the 

displacement takes the opposite sign 0b <δ . 
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3.   SIMULATIONS AND EXPERIMENTAL RESULTS 

The method has been tested by the real signals, which 
have been measured in the three-phase power system when 
the short-circuit appear in the line L3. Three voltages (Fig. 
3: 0u

)
 is the maximal value of voltage in the stationary state 

at the beginning) and current in line L3 (Fig. 4: 0i
)

 is the 

maximal value of current in the stationary state at the 
beginning) were sampled in the time interval of seven 
periods before the protection against short-circuit finally 
disconnect line L3. Sampling frequency was kHz1S =f and 

we have only 20 points in the period of measured signals. 
Signals were quantized by 12-bits A/D converter.  
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Fig. 3. Voltages in the three-phase power system when the short-circuit 
appear in line L3: a – voltage in line L1, b - voltage in line L2,   c - 

voltage in line L3 
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Fig. 4. Current in line L3 

In Fig. 5, the results of the algorithms tracking the 
frequencies of voltages in lines L1 and L2 are shown. 
Frequencies of the uncorrupted phases are changing 
opposite from stationary state at the beginning 
( 9998.00 =ff , Hz500 =f ). We can see that the three-

point interpolation with the Hanning window using the two-
period measurement time (curves b - L1 and d - L2 in Fig. 
5) smoothes the frequency changes in comparison with the 
two-point interpolation (curves a - L1 and c - L2 in Fig. 5) 
due to more points using in regression. Frequency can be 
also estimated on the voltage and current in the faulty phase 
L3 (Fig. 6), but changes are much larger. 
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Fig. 5. Estimations of the frequency changes of the voltage in line L1 (a 
– two-point interpolation and b – three-point interpolation) and voltage 

in L2 (c – two-point interpolation and d – three-point interpolation) 
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Fig. 6. Estimations of the frequency changes of the voltage in line L3 (a) 
and current in line L3 (b) 

4.   CONCLUSIONS 

A simple algorithm for fast measurement and estimation 
of the power system frequency is presented. The frequency 
is calculated from the amplitude DFT coefficients. The 
interpolations with larger number of points and with longer 
time of measurement decrease the systematic errors, with 
smaller number of points there is an inverse appearance. At 
the one-period observation time, the best results are with the 
rectangular window (the two- point and the three-point 
interpolations). At the two-period time is better to use the 
Hanning window and the two-point interpolation and at the 
three-period time, the best results are with the Hanning 
window and the three-point interpolation. This interpolation 
automatically adds the sign of displacement and the error 

level is below ( ) 4
max

10−≈θE . The compromise for the 



efficient measurement of the power system frequency is at 
the two-period measurement time using the Hanning 
window and the two-point interpolation. 
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