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Abstract: Many computing techniques are used to evaluate 
Power Quality parameters, each showing specific 
advantages and disadvantages. This paper presents an 
improvement of Curve Fitting Algorithm (CFA) having 
good accuracy in the estimation of the signal’s power 
quality parameters.  
  
Keywords: curve-fitting algorithm (CFA), power quality 
(P.Q.). 

1.   INTRODUCTION 

The sudden changes in power systems, produced by 
many reasons as the use of large power reactive loads or by  
unwelcome struck by lightning, can be the cause of 
malfunctions and often damages of others electrical systems 
connected to the electrical network. 

The economics problems consequents with these kind of 
technical problems are often very hard to sustain, so it be 
born the necessity to quantify the effects that can be 
produced by use of power electrical systems on others 
electrical systems linked by the electrical network. This  
yielded the Power Quality and Electrical System Reliability 
important topic in the studies of power system areas and 
leaded the International Electrotechnical Commission (IEC) 
to the definition of parameters that give the measure of the 
quality of the energy [1,2,3,4,5].  

IEC has defined a series of standards to deal with power 
quality issues. The two most widely referenced standards or 
guidelines are the IEC EMC series as indicated with the 
acronym IEC 61000-x-y (with x:1-6 and y:1-7) and the 
IEEE 1159[6,7]. These guidelines provide the fundamental 
principles on EMC issues, describe the various definitions 
and terminologies used in the standards, describe and 
classify the characteristics of the environment or 
surroundings where the equipment will be used, provides 
guidelines on compatibility levels for various disturbances, 
define the maximum levels of disturbances caused by 
equipment or appliances that can be tolerated within the 
power system, define the immunity limits for equipment 
sensitive to EMC disturbances, provide indications on the 
design of equipment for measuring and monitoring power 
quality disturbances outlining the equipment testing 
procedures to ensure compliance with other parts of the 
standards, give hints on the installation techniques to 
minimise emission as well as to strengthen immunity against 

EMC disturbances, describe the use of various devices for 
solving power quality problems, give the specific standards 
to a certain category of equipment or for certain 
environments including both emission limits and immunity 
levels standards.  

 
The IEC’s guidelines identify thirteen parameters to 

quantify the quality of the electrical energy: 
1. Power frequency; 
2. Magnitude of the supply voltage; 
3. Supply voltage variations; 
4. Rapid voltage changes; 
5. Supply  voltage dips; 
6. Short interruptions of the supply voltage; 
7. Long interruptions of the supply voltage; 
8. Temporary power frequency overvoltages between 

live conductors and earth; 
9. Transient overvoltages between live conductors and 

earth; 
10. Supply voltage unbalance; 
11. Harmonics voltage; 
12. Interarhmonics voltage; 
13. Mains signaling voltage of the supply voltage. 
 
Each one of these entities faces and determines a part of 

the problems that may be found in a context so wide.   
 We would want that the waveform presents on electrical 

network should be a perfect sine wave, but the presence of  
the effects of large sudden changes in the net produce 
significant deformations in the wave. The thirteen 
parameters, defined by the IEC, quantify these deformations 
and allow us to determine the quality of the energy of the 
electrical signal under control. 

Technically speaking, to have these parameters, first of 
all, it is necessary to measure the signal. A probe able to 
pick up the electrical signal in real time and with a great 
level of confidence face this problem. After which it is 
necessary to study signal’s characteristics extracting 
information from it. For this purpose, and so to valuate the 
quality of energy, there are many different approaches like 
FFT, applications of adaptive filters, artificial neural 
networks, singular value decomposition (SVD), higher order 
spectra, prony model and min-norm model 
[8,9,10,11,12,13,14,15,16,17,18]. The aim of all these 
techniques is to obtain the spectrum of the signal. For 
examples prony model and min-norm method present high-



resolution estimated spectrum but their accuracy are 
strongly dependent by signal distortion, the sampling 
window and the number of samples taken into the estimation 
process, moreover the computational complexity is more 
than FFT algorithm that is the point of reference and 
comparison for the other techniques because it has been 
used in Power as well as most other engineering fields and, 
therefore, it is the most common technique for system 
spectrum estimation [1,8,9,14]. Others techniques, like 
applications of adaptive filters and artificial neural networks, 
operate adequately only in the narrow range and at moderate 
noise levels moreover present bad resolution [12]. Others, 
like singular value decomposition (SVD), are clearly 
superiors than FFT but the computational effort is so hard 
that are suitable only for offline analysis of recorded 
waveforms absolutely unsuitable to satisfy the necessity to 
monitor the signal in real time [13]. FFT is the algorithm 
most widely spread throughout the power system field and 
permits a convenient assessment of magnitude and phase 
information. Nevertheless all system spectrum estimations 
based on Fourier transform request special care due to 
possible problems with aliasing, spectral leakage and picket-
fence that could involve an incorrect version of the spectrum 
[5]. These performance limitations are particular 
troublesome when analysing short data records, which occur 
frequently in practice, because many measured process are 
brief. The use of windowing techniques alleviates these 
problems trying of minimise sidelobe’s levels, and 
consequently making as narrow as possible the mainlobe 
width of the spectrum frequency of the window function 
used. In this way it includes only the spectral of interest, 
with minimal sidelobes levels to reduce the contribution 
from interfering spectral components. In fact, if the 
magnitude of the window function is reduced towards zero 
at the boundaries, any discontinuity in the original 
waveform is weighted to a very small value and thus the 
signal is effectively continuous at the boundaries. This 
implies a more periodic waveform which has more discrete 
frequency spectrum [5]. Anyway it is easy to assert that FFT 
techniques present high computational cost and don’t permit 
to have measurements in real time, aspect fundamental in 
our application. 
Least squares fitting, or its variant absolute value, can be 
applied to extract harmonic information without the 
drawbacks necessary for FFT algorithms and them 
particularly suitable for real time application.  

1.   CFA 

Curve-Fitting Algorithm is another techniques to verify 
power quality voltage parameters [5,19,20,21,22,23,24]. It 
uses least square error estimation to find the magnitude and 
phase of the signal frequencies. Curve fitting selects the best 
fit of a curve to a waveform and measures the discrete 
residual values between the waveform and the fitted curve. 
In the least squares method, the size of these residuals is 
measured by the sum of their squared values. This is then 
minimised to obtain the least squared error, and the 
amplitude and phase of the best fitted curve calculated. 
Least squares curve fitting has both computational and 
theoretical advantages over Fourier processing. A least 

squares curve-fitted approach is most useful periodicity 
clearly exists in the data like in our case. Also of particular 
advantage is that in a curve-fitted approach, it is not 
necessary to truncate data exactly every period as with 
Fourier Transform[5]. 

The aim of this work is to present an improvement of 
curve-fitting algorithm approaches that allow to describe 
power quality in real time and with more accuracy.  

2.1.  Modified CFA 

In scientific literature Curve-Fitting Algorithm assumes 
a fixed sampled window, since 0 until T, and operates 
minimizing  the integral Θ with respect to A and B:  
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T
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where y(t) is the sampled function, Θ is the summation of  
square differences from a sinusoidal signal positioned with a 
phase 

B
Aa tan=ϕ  fixed in the 0-2π range with respect to the 

window. With the methodology of Lagrange multipliers, it 
is possible to implement the well known best fit procedure, 
considering the frequency f related to T by the 

Tf /22 ππω == .  

The first statement to face is the real value of frequency that 
must be equal to the settled one. It can be calculated 
developing the equation 1, we obtain that ω is: 
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In the (3) equation ωcalculated must be equal to ω, so this value 
will be modified till obtain the equality: this justifies the 
modified adjective in CFA 
This procedure may be obtained using a cyclic procedure 
sweeping the frequency, that is heavy to compute. 
This work present a method that avoid the cyclic calculation 
and to obtain directly the correct estimation of ω. 
To obtain it, we can rewrite eq. 3 in the generic relation: 
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So, the difference among the real frequency and calculated 
one is indicated by ∆ω and developing by means of Taylor 
series numerator and denominator of (3) we can write the 
next relation: 
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Developing the previous relation, we obtain the follow g-
grade general equation: 
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where is possible to define the “ai” coefficients like: 
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In the appendixes 1 and 2 there are the determination of the 
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The g value is a choice linked to the accuracy required by 
CEI EN 50160, that in this case must be chosen equal to 3, 
that means the resolution of a third grade algebraic equation. 

When work frequency is fixed, it’s simple to calculate 
system’s harmonics replacing δω with ω and it is possible to 
demonstrate that system’s interarhmonics are estimable 
using following relations: 
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where A is the means square root of interarhmonics fields 
and H(T, ω2 , ω1),  Г(T, ω2 , ω1), A(T, ω2 , ω1) and B(T, ω2 , 
ω1)  are respectively: 
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If interarhmonics fields are n, the calculus of the last two 
integral is hard because it is necessary to repeat it 2n times, 
but, if interarhmonics fields are contiguous, the calculus is 
more simple because it is repeated only n+1 times.  

2.2. Uncertainty in Modified CFA 

The uncertainty linked to the cutting off of the series at 
the third terms is about 0.2% [25]. 

To compute the accuracy for each of previous integrals 
in A and B terms, we must consider the uncertainty linked to 
sampling and that linked with numerical integration. 

In the integral calculation, uncertainty linked to samples 
is half a quantum or ½ q. 
With n independent samples by the Central Limit Theorem 

we must have: nq
2

1
σ =  derived by the Gauss Error 

Theory that assures nησ = . 

We consider a pound in our integrals varying by the integra- 

nd: “sin c α”, “ α sin c α”,  “ α2 sin c α”   and  “ α3 sin c α” . 
The definite integral extended  to a  whole  period  furnishes 
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Generically is possible to write: 
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Developing calculations, uncertainty linked to quantization 
errors are given by:  
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with 
k0 = 2 / π,                               k1 = 2,  
k2 = (3π2 – 4)/π ≈ 8.65,           k3 = (5π2 –12) ≈ 38 
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with y0 = 2 / π,        y1 = 2,   
y2 = (5π2 + 4π-8) / 2π ≈ 9.1,  y3 =(7π2 + 6π +24) / 2 ≈ 64.5. 

To determine the uncertainty on numerical integration, 
considered as a “rectangular series” we have: 
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being b-a the integration limits equivalent to T, h integration 
interval linked each other by the  T/n, where M is the 
maximum value of the first derivative in the integration 
interval: 
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To evaluate M we consider conditions:  
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The integrand, derivative is : 
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By general consideration of behavior, the value of the 
maximum of derivatives S’(t*) and  C’(t*) will be that allows 
S’’(t *) = 0 and C’’(t*) = 0. 
Supposing we have y(t) = A/2 sin (ωt + α), is possible to 
obtain  t* that furnishes the maximum, as an example,  of 
functions fS

’(t), obtaining 
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that furnishes: 
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and in similar way for (t)f '
C

, we have: 
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It must result for sin function : 
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while for cosine function: 
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Simple considerations allows to demonstrate that t* can be 
determined, in the sin case as: 
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while, in the cosine case, the relation became:  
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The integral error became:  
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with           f(S,i) = Si          ;             f(C,i) = Ci ; 
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By the underlining of ω, we can obtain:  
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being HS,0 = 1,000;  HS,1= 1,135; HS,2= 0,700; HS,3= 0,104; 
HC,0= 1,000;  HC,1= 0,192; HC,2= 0,903; HC,3= 1,000. 
General expression of uncertainty related to the computing 
of each integral concerning our problem can be expressed as 
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If we synthesize the expression (3) of ω as: 
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it is possible to synthesize the uncertainty of ω as: 
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In terms of relative uncertainty:  
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In many calculations this value doesn’t exceed tens of ppm. 

3.    FIRSTS EXPERIMENTAL RESULTS 

The firsts experimental results to valuate the sensibility 
and the accuracy of CFA have been obtained by a new 
instrument able to determine in real time the thirteen quality 
parameters. This instrument has been developed “ad hoc” 
for this purpose because in commerce there isn’t an 
instrument able to satisfy all the characteristics reached. It is 
composed by a PC with an acquisition card that pick up an 
electrical signal directly on the electrical network by means 
of opportune transducers. The acquisition frequency is 128 
KHz corresponding to 2560 samples that define a buffer of 
0.02 s. Each buffer is then analyzed by CFA program that is 
able to extract the information.  

Table 1 shows the value of the fundamental for each 0.02 
s buffer with own uncertainty. 

 

Tab. 1:  Frequency variation obtained with CFA algorithm  

 Time Buffer 
(ms) 

Value (HZ) Uncertainty 

0-20  49,98052 0.0212% 
20-40  49,99997 0.0132% 
40-60  49,98052 0.0070% 
60-80  49,98052 0.0117% 
80-100  49,98052 0.0001% 
100-120 49,99997 0.0002% 

 
Figure 1 shows the behavior of the fundamental 

frequency for a 0.12 s time window. 
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Fig. 1:  Frequency variation obtained with CFA algorithm 
 

As it is possible to see, the instrument characterizes little 
variations in the fundamental frequency, anyway close with 
50Hz.  

To obtain a comparable accuracy by FFT algorithm, it 
should use a zero-padding technique with a number of 
zeroes equal to 500 times the number of samples used. With 
only 2560 samples we should have a sensibility not greater 
to 50Hz. 
Another advantage, that will be faced in other works, is that 
this form of CFA formula allows to define the 
interarhmonics fields in an easy way and according to CEI 

Fundamental Frequency (Hz) 

Time Window (ms) 



6000-4-7 (where the fields are 240). Moreover CFA formula 
give us information about flicker in amplitude modulation 
field of the fundamental frequency according to CEI EN 
50160. A first experiment on real collected values allow us 
to say that the frequency calculus accuracy is similar to 
fundamental amplitude and it is equal to 0.2% for g=3. 
Evaluation of all parameters can be obtained in real time 
using a PC with only 1000 signal points sampled at 1000 Hz 
frequency.  

4.   CONCLUSION 

The Curve Fitting Algorithm allows to determine with a 
little number of samples with respect other algorithms, and 
so saving much computational time, the fundamental 
frequency of the signal under observation with an acceptable 
level of accuracy. This represents the major problem for 
every program that face a real time analysis of a signal.  

CFA permits to determine easily the harmonics and their 
phase in the observation window after the individuation of 
fundamental.  

An extension of Curve Fitting Algorithm concept, allows 
the determination of interharmonics fields according with  
definitions presents in CEI EN 50160. 

The possibility to monitor with sliding window the 
signal under observation allow us to identify very short 
voltage interruptions too.  

A first experimental prototype has been realized already 
operative, that will be used to determine inter-harmonic 
presence modifying CFA.    
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