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Abstract: Weight filtration is performed in time domain 
through multiplying values of appropriate samples by a 
weighting function and summing the yielded products along 
the entire window length. The number of weight windows is 
unlimited. In his paper author is trying to define the filtra-
tion quality and its influence to the weight window selec-
tion..  
  
Keywords: weight filtration, criterions of quality, filtration 
error. 

1.   INTRODUCTION 

Weight filter is an FIR (finite impulse response) filter. It 
is performed in time domain through multiplying values of 
appropriate samples by a weighting function, also called 
weight window (or weight function, or simply filter), and 
summing the yielded products along the entire window 
length. It may be defined by the following relationship: 

  ∑
−=

+
⋅=

k

ki
zijf ji

ywy  for Nj ,...,1=  (1) 

where: 
− 

jiz
y +  is the filtration input signal affected by noises,  

− 
jfy  is the signal after being filtered,  

− iw  is the weighting function, k is a parameter determin-

ing the window width equal 12 +⋅k ,  
− N is the number of samples of the measured signal to be 

filtered. 
The basic differences between weight filter and classical 

FIR filter are: 
− weight filter is performed in the time domain, 
− it no needs the transformation to the frequency domain, 
− the weight window is symmetrical.  

2.   WEIGHT FUNCTIONS 

The basic parameters of weight filtration are: the form 
and the width of the weight window. The weight window is 
a symmetrical function with an uneven number of elements 
equal 12 +⋅ k . In a practice the kind number of weight win-
dows is unlimited. The only condition the weighting func-
tion has to meet is: 
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3.  CRITERIONS OF QUALITY 

Criterions of quality can be used for the filtration’s pa-
rameters selection (form and width of the window). The fil-
tration error can be this criterion.  

To define the filtration error the model of the measure 
procedure (Fig. 1) will be helpful.  

  

Fig.1. The model of the measure procedure 

Where yw is the discrete unaffected signal, yz is the signal 
affected by the noises z, and yf is the signal after being fil-
tered. 

The filtration error may be defined as: 

f_error = what we know – what we want know 

Two kinds of errors can be defined: maximal and mean 
square. 

By virtue of the Fig.1 and filtration definition: 
– absolute maximal:  
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– relative maximal: 
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and 
– absolute mean square:  
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– relative mean square: 
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Where: 
yo – the undisturbed signal on the output of the measuring 

apparatus, 
yf – the signal after filtration. 

In a practice the real unaffected signal yo is never known. 
Hence, only simulations evaluate errors defined above. 
However obtained results may be used in a practice.  

4.  RESEARCH 

The Author’s research is based on simulated signals af-
fected by noises. All simulation and research were made in 
the Mathcad 12 program.  

4.1. Standard signals 

Simple periodic signals (not included higher harmonic 
signals) were used as the standard signals yo during research. 
All of the standard signals has the normalized amplitude. 
The number of samples the standard signal yo were N = 1024 
per period. 

4.2. Disturbances 

There were three kinds of disturbances during author‘s 
research: the random, the periodic and the impulse. 

4.2.1. The random noise 

The Author has used the internal Mathcad function as the 
random noise generator. Generated noise had a normal dis-
tribution. The maximal disturbance amplitude were not 
higher than 10% of the amplitude the standard signal yo. 
Samples of the random noise zi, the standard signal yo and 
disturbed signal yzi are shown on Fig.2.  

 

Fig.2. The input signal yo disturbed by a random noise 

The random noise from fig.2 has a normal distribution 
and maximal amplitude equal 10% of amplitude the stan-
dard yo signal. 

4.2.2. The periodic noise 

In the case of periodical disturbances the summary signal 
zi was the combination from 3 to 10 sinusoidal signals. The 
number and the frequencies of the component signal were 
random generated. Similarly random generated were ampli-
tudes of all component signals. However its maximal ampli-
tude couldn’t be greater than 10% of the amplitude the stan-
dard yo signal. Samples of the periodic noise zi, the standard 
signal yo and disturbed signal yzi are shown on Fig.3.  

  

Fig.3. The sample of the input signal yo  
disturbed by a periodical noise 

Disturbances from fig.3 are described by equation: 
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Where ω 0 was a pulsation of the standard signal yo. 

4.2.3. The impulse noise 

Impulses noises were generated by the δ Kronecker func-
tion included as the internal Mathcad function. Amplitude of 
this noises, as previous cases, was not greater than 10% of 
the amplitude the standard yo signal. Impulse noises had a 
periodical distribution. 

4. 3. The weight windows 

In his research the Author has made a thorough analysis 
tens of weight windows like: square, triangle, sinusoidal, 
Hamming, Hanning, Blackman, Kaiser and Gauss etc. 

In this paper the Author has described obtained results 
for some samples of chosen windows such as: 
− square window: 
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− Hamming window: 
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− Gauss window: 
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where: i = 0..2⋅k+1 and µ = i /2, σ = µ /1.7. 
Forms of this three weight windows are shown on Fig.4.  

 

Fig.4. Samples of weight windows: 
square, Hamming and Gauss 

The width of all windows from Fig.4 was 201 samples. 

4.4. Results of  the research 

The usability the described criterions of quality was 
checked by Author’s special written program based on the 
Mathcad 12 software environment.  

The program has evaluated values of the relative filtra-
tion errors: maximal and mean square, on the window 
width-dependent.  

The number of all obtained results is to big to make full 
presentation in this paper. Only results obtained for the three 
windows (8,9,10) described above will be shown for this 
reason as the sample.  

Functions of the relative maximal error (4) for random 
noises (Fig.2) are shown on Fig.5.  

 

Fig.5. Relative maximal filtration error 
(square, Hamming and Gauss windows) 

for random noise 

All of the error’s function contains some relative ex-
tremes (minimum). The number of extremes is the kind of 
the window-dependent. The places of the minimum are also 
the kind of noises-dependent. The square window produced 
the largest number of minimum. All of three errors function 
are showing declining tendency with growing of the window 
width.  

The mean square relative errors (6) for random noises, 
on the window width-dependent, are shown on Fig.6. The 
value of this error are declining with the windows width. 
Only the error for square windows has some local extremes, 
but they are smaller than in the relative maximal error case. 

  

Fig.6. Relative mean square filtration error for: 
square, Hamming and Gauss windows 

Samples of Gauss window filtrated signals yf (for differ-
ent window width) are shown on Fig.7.  

  

Fig.7. Weight filtration of the random noise with Gauss 
window (for different windows width)  

Where i is the window width. 
The next picture (Fig.8) contains values of relative 

maximal errors for periodical disturbances (Fig.3) described 
by (7) for all three kinds of windows (8,9,10). 
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Fig.8. Relative maximal filtration error 
(square, Hamming and Gauss windows) 

for periodical disturbances 

The mean square relative errors (6) for periodical distur-
bances are shown on Fig.9. 

 

Fig.9. Relative mean square filtration error for: 
square, Hamming and Gauss windows 

Samples of Hamming window filtrated signals yf (for dif-
ferent window width) are shown on Fig.10. 

  

Fig.10. Weight filtration of the random noise with 
Hamming window (for different windows width) 

Where i is a window width. 

5.   CONCLUSION 

The author has described his results of research for in-
fluence criterions of quality for weight window selection.  

Summary ending conclusions: 
– the real values of errors are never known because the real 

signal yo is never known too, 
– values of both described by the Author errors can be ob-

tained only during simulation of noises as well input sig-
nals yo, 

– obtained results of simulation can be helpful in a practice 
for a kind and a width of the window selection,  

– both values of relative errors (maximal and mean square) 
were declining with the windows width,  

– the number of local minimum were on the windows form 
and the kind of noises dependent,  

– the number of local minimum were greater for the rela-
tive maximum error, 

– for this reason the mean square error was better for the 
filter parameters selection, 

– the value of filtration error ((4) or (6)) can be useful for 
form of the weight windows optimization. 

– both criterions of relative filtration errors don’t give the 
explicit answer which one of filters was better. The final 
choice of the filter is on the kind of the signal, noises and 
the human’s knowledge depended. 
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