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Abstract Monitoring the physical or chemical conditions of 
the materials composing a monument can be achieved in a 
not invasive way by using trained neural networks. Soft 
sensors based on Elman neural networks have been 
developed to provide virtual measurements at locations of 
the monument surface using only the measurements 
acquired by an Air Ambient Monitor Station located nearby 
the monument. Here we improve the accuracy of the virtual 
measurements by using averaging techniques or mixture of 
such soft sensors. The accuracy of these virtual instruments 
is analyzed and compared from a metrological and statistical 
point of view. 
  
Keywords: soft sensors; Elman neural network; mixture-of-
experts; cultural heritage; statistical data analysis. 

1. INTRODUCTION 

Soft sensors constitute an innovative paradigm for 
obtaining measurements in complex experimental conditions 
or in particular locations [1-2]. 

This paradigm was firstly adopted for solving a problem 
in cultural heritage in [3-5]. In this field it is very important 
to have not invasive tools for monitoring the physical or 
chemical conditions of materials composing a monument. 
Monitoring is a long-term process, which obliges to 
maintain several real sensors on the monument surface for a 
long time to periodically repeat the sample campaigns. So 
doing, this process has high costs and becomes invasive, 
since it reduces the enjoyment of the monument itself. 

A modular system of twelve soft sensors [3], based on 
recursive neural network of Elman type, was developed to 
predict ambient parameter values (such as air temperature, 
contact temperature and humidity) in four locations on the 
monument surface. The input to the system are real 
measurements (air temperature, humidity) acquired at the 
same time by an Air Ambient Monitor Station (AAMS), 
located nearby the monument.  

We underline that in this application a soft sensor is 
viewed as an “instrument” that provides indirect 
measurements, in fact the output is in a different 
geographical position from the location of the input  and can 
be a different ambient parameter. 

The aim of this work is to improve the accuracy of the 
virtual measurements simulated by our soft sensors by 
designing multi-sensor systems using averaging techniques 
or the concept of mixture of soft sensors. We address the 
problem in two different cases: when data acquired by two 
AAMS (placed nearby the monument in different location) 
are available and when they are not. 

Multi-sensor are commonly developed either because the 
measurement accuracy provided by a single soft sensor is 
not sufficient or because the information required cannot be 

obtained by measuring  a single parameter. 
The design of  suitable multi-source soft sensors can 

solve the problem of improving the performances in the case 
of several AAMS, placed not too far from the monument, 
which provide several inputs of the same quantities. Indeed, 
we can realizes the data fusion at different levels and in 
different ways according to the information also of 
probabilistic type that can be known.  

In section 2 the Elman soft sensors are described as 
applied in  constructing a modular system for monitoring  
the ambient parameters; the procedure to validate their 
performances from a metrological point of view is also 
briefly described. 

In order to produce virtual measurements with higher 
accuracy when real input data comes from one AAMS 
source only, an  averaging procedure of several soft sensors, 
having homogeneous variances, is defined in section 3. In 
section 4 the tool mixture-of-experts is proposed to achieve  
the data fusion from two AAMS, besides the construction of 
a soft sensors simply  having a multi-source input. 

The performances of the soft sensors, developed 
according to all these different strategies, are finally 
analyzed in section 5 and compared by means of a two-
phase procedure [4].  

 

2. ELMAN NEURAL NETWORK FOR SOFT 
SENSORS 

2.1. A modular system for monitoring ambient 
parameters. 

In [4-5] a description of the Elman methodology for 
designing and training the modular system of twelve soft 
sensors (Fig. 1), is given. In the monitoring application each 
sensor had to learn a complex predictive model for an air 
ambient parameter at a particular location on the surface of a 
monument. Here the monument and the physical/chemical 
parameters, characterizing the atmosphere, have been 
considered to be a unique environmental system. 

A soft sensor learns the complex relation between a 
specific physical or chemical quantity, measured by the 
AAMS, and the quantity measured in a specific location on 
the monument surface by a real sensor: for example the 
input vector contains air temperature and the hour, the 
output vector contains contact temperature, which have 
been observed at that hour. The association mapping is 
multi-values, since it has  learnt that to an input value might 
correspond several values of the output ambient parameter 
in a specific location on the monument, at the same hour but 
in different days. 
 



 
 
Fig. 1. The connectionist system topology: twelve soft sensors of 

Elman type to measure contact temperature, humidity and air 
temperature in four locations of a monument (labels 1-4 correspond to 
the 4 locations).  

Afterwards, in the working time the soft sensor will be 
able to predict, for example, the contact temperature at the 
same location of the surface, Tc3(t), to a novel air 
temperature input from the AAMS, a(t). Let’s define the soft 
sensor of Elman type, which estimates the contact 
temperature values in the third location (corresponding to 
the West cardinal position) on the monument surface, in  the 
following compact notation: 
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where f(.) represents the specific trained Elman neural 
network that approximates the physical phenomenon,  W3  
the matrix of all the inner model parameters, such as the 
number of neurons, the weight matrices and biases. In this 
example S3(t) approximates Tc3(t). In f(.) the input are the 
ambient temperature a(t), measured at time t by a AAMS, 
the corresponding day hour (h) at which a is acquired, the 
function Ψ that gives the output of the hidden layer to get 
the recursive behavior of the network. 

2.2. The procedure to validate the soft sensor 
performance 

Usually in  the validation of neural networks only 
statistical evaluators that compute overall values are used to 
assess the success of the predictions for a new dataset (Test 
set). We defined instead a more complex validation 
procedure [4] that considers the soft sensor as a virtual 
instrument, which must be able to substitute a hard sensor in 
measuring an ambient parameter with good accuracy in the 
observed domain. 

The statistical analysis of the response of the soft sensors 
in the modular system in Fig.1 is then achieved by means of 
a new procedure, which has two phases: the statistical phase 
based on specific estimators, similar to the ones used in 
making specifications of a real instrument (data sheet); the 
validation  by comparison of the substitution errors, which 
allows to assure the gain of the soft sensor. 

The substitution error (or prediction errors) for the soft 
sensor  S at time ti is given by: 

ES (ti) = S(ti) – r(ti)                               (2) 
where r(ti) is the measurement acquired by an hard sensor 
that is working at the location of the monument for the 

training/testing period (i = 1,…, N).  The procedure 
statistically characterizes the behavior of Es in the observed 
range of each ambient variable: the range of an observed 
variable is subdivided in C subintervals  Ic, c = 1,..., C of 
equal length; consequently the Test set is subdivided in C 
subsets and for each Ic the mean value and the standard 
deviation  are computed for the corresponding substitution 

errors E c
s . The overall standard deviation σS of the 

substitution error is also computed for all the N item in the 
Test set. Our procedure allows to validate the soft sensor 
performance in the whole domain of interest by applying  

several estimators to ES and to the two sequences E c
s ,  

which are obtained by subdividing the input space in C = 24 
for the variable h, or C = 45 for the variable a. 

For any of the twelve sensors in Fig.1  substitution errors 
were analyzed and zero-mean Gaussian-like distributions 
ware shown. The procedure assessed that each soft sensor 
based on the Elman recursive mechanism, with a short 
delay, have constructed an implicit physical model that is 
correct, since the predicted measurements are substantially 
without bias, in the same range (temperature, hour) of the 
real data r(t) and without any particular trend in temperature 
or during the day.  

It must be underlined that if two AAMSs are working 
nearby the monument, we could predict the contact 
temperature by means of two different soft sensors and they 
would probably provide different  estimates of the same 

quantity, say S '
3  and S ''

3 , as it will be discussed in section 4. 

3. SINGLE INPUT SOURCE AND MULTISENSOR 
SYSTEM 

Averaging repeated measurements, as it is known, 
enables to reduce the uncertainty of a measured value when 
each measurement can be considered acquired 
independently of the others and in the same environment 
conditions. Differently  when a soft sensor, viewed as an 
“instrument” that provides indirect measurements, is used, 
being of deterministic type, we have infinite precision 
measurements: by repeating the operation in the same 
conditions we always obtain the same value. 

To gain in variance reduction of the errors, when input 
from only one AAMS is available, the following averaging 
strategy can be adopted, i.e. by using several soft sensors 
trained in the same conditions to simulate the same quantity.  

The idea of averaging different simulated outputs can be 
viewed as the averaging operation of repeated 
measurements, obtained by using different instruments 
pertaining to the same class (in the sense that all the 
instruments must have homogeneous error variance). In this 
metrological framework, we are assessing that we use 
several soft sensors for measuring a quantity in 
reproducibility conditions. 

The implementation of this idea is driven from the 
consideration that the estimates for the parameters W3 in the 
Elman model are obtained by solving not linear systems in 
the training phase and that they depend on the chosen  
starting point and some thresholds. 

 This means that different soft sensors could be 



constructed by choosing different starting and working 
conditions, therefore several soft sensors can be trained for 
an ambient parameter using the same Training set, but 
different numerical strategies. 

We can assure that all these virtual instruments are of the 
same type, since they have been generated using the same 
neural structure and the same Training set. Moreover, they 
are to be considerate independent, because the relations 
among them are not linear and the specific values of weights 
and biases W  are different, being recursively estimated, for 
each neural network. Indeed, the recursivity and the not 
linearity of the Elman mechanism in Eq. (1) guarantee 
different evolutions of the states, thus reaching different 
neural networks. 

As it is known, the variance is reduced when repeated 
data to be averaged are corrupted by zero-mean random 
uncorrelated errors. In the context of soft sensors the 
statistical assumption of no correlation is not fully satisfied, 
hence the error reduction using the average operator may be 
less than usual, say less than k, the total number of the 
averaged items. 

The averaging  procedure to build such average soft 
sensor for a specific ambient parameter is the following: 

 
- for the same Training set, generate several soft 

sensors, choosing different initial points; 
- among them, choice the ones pertaining to the same 

class, in the sense that they give almost the same 
standard deviation (homogeneous sensors), say k 
this total number; 

- activate these k soft sensors and work for the Test 
set; 

- average their k outputs to get the output P(k)(ti) for 
each item of the set. 

4. MULTIPLE SOURCES AND MIXTURE-OF-
EXPERTS 

In order to obtain the variance reduction in the case of 
several input sources the  neural network mechanism can be 
directly use to do the data fusion in a  natural way.  

Being available two inputs of the same quantities, say 
AAMS1 and AAMS2,  we can construct a new sensor to 
measure an ambient parameter at a given location by using 
again the Elman network technology, but now with  three 
inputs. For example to simulate the contact temperature in 
eq. (1) we build U(t), with a1(t), a2(t), h(t) as inputs 
(consequently also in the recursive part Ψ), where a1(t), a2(t) 
are ambient temperature values acquired by AAMS1 and 
AAMS2, respectively.  This new soft sensor U(t) is a  multi-
source soft sensor that associates contact temperature values 
to a tri-dimensional input space. 

Besides this natural  strategy in building multi-source 
soft sensors,  the concept of  “mixture-of-experts” neural 
network can be adopted in this general framework of data 
fusion. 

The “mixture” paradigm [6] allows to reduce the 
complexity of a problem by decomposing the input space 
(the learning tasks) and the variance of the output by 
combining multiple sensor predictions. A system developed 
according to this architecture is characterized by some 

experts and a gating network. Each expert, or specialist 
network, is a neural network and all the experts receive the 
same inputs and have the same number of output. The gating 
network can reduce the fitting errors, since it is also a neural 
network that gives the probabilities of selecting each expert. 
The benefit of this approach is evident when the learning 
structure can be well identified, for example using prior 
knowledge or clustering methods.  

In [7] the use of the mixture-of-experts was proposed to 
achieve a complex mapping function by specialized 
neurons.  

In our application the learning tasks are already divided, 
since the two AAMSs give obviously separate and different 
inputs: one AAMS1 is placed fourth meters far from the 
monument, while AAMS2 some hundreds of meters far. 
Moreover the association mapping is multi-values for each 
soft sensor.  

To realize a generic soft sensor we consider a system 
with two experts, one gating network and one selector, as in 
Fig. 2. 

The two Elman neural networks are independently 
trained and tested using different train and test as described 
in section 2.  

 
 

Fig. 2. The mixture of local expert system. 
 
By the use of the two Training sets two vectors of errors 

ES1(ti) and ES2(ti) (one for each Elman Neural Network) are 
computed. These two vectors are useful to build the output 
part of the Train set for the gating network. In fact, we must 
train the gating network using as input the surveys obtained 
from the two AAMSs and as output a couple of values that 
represent the normalized conditional probability p1i and p2i: 

 
 
 

     (3) 
 

 

We can use as p1i and p2i, 1/ ES1(ti) and 1/ ES2(ti) 
respectively. Finally,  the gating network that gives two 
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values of conditional probability can be obtained. These two 
values represent, substantially, the accuracy with which the 
two experts have supplied the results in similar condition of 
input during the train phase. 

The selector works like a multiple input, single output 
stochastic switch; the probability that the switch will select 
the output from an expert is linked to the its conditional 
probability returned by the gating network. 

If information about the prior distribution is not known 
or it is difficult to train the gating network, an uniform 
distribution as a not informative prior can be adopted. So 
doing, an equal weight 1\2 is given to each expert to mean 
that both the experts contribute in the same way.  

Let us name Q the soft sensor given by using the input 
AAMS1 (single-input sensor)  and P the single-input soft 
sensor given by AAMS2; P

(k) the average soft sensor given 
by the averaging procedure in section 3 (for k soft sensors 
having homogeneous behavior) when the single source 
AAMS2 is available; U the soft sensor built when multiple 
data (both from AAMS1 and from AAM S2) are available 
and used as inputs to be directly fused by the Elman 
recursive mechanism; M(Q,P) the mixture soft sensor of two 
Elman sensors Q and P. The last two type of soft sensors 
can be viewed as multi-source input sensors. 

5. RESULTS 

The strategies, outlined in the previous sections, will be 
compared from a statistical and metrological point of view 
as applied to solve the monitoring problem of ambient 
parameters in  different locations on the roman theater in 
Aosta city (Italy).  

We want to compare  the accuracy improvement that has 
been achieved  in predicting ambient parameters by the 
several type of soft sensors. 

 The air temperature parameter in the first location (in 
the East side of the theater) will be deeply analyzed, 
however we have trained and validated a huge quantities of 
soft sensors for the twelve ambient parameters introduced in 
section 2. 

 
 
 

 
 
Fig. 3. Plot of the standard deviations of the substitution error (as 

subdivided for temperature) of the best trained  soft sensor P (dash-dot 
line) among the 9 soft sensors used in the averaging procedure; plot of 
the average soft sensor P(9)  (solid line). 
 

 
For the averaging procedure we have performed an 

experimental setup, training fifty Elman Neural Networks, 
using the same Training set (size  N = 1348) from AAMS1 

and choosing among them the ones that provide similar 
behavior to the best one (here we are considering results 
relative to the air temperature Ta1). Finally we have obtained 
k = 9 soft sensors, which have a standard deviation of the 
substitution error in the range [0.806,0.830]. We have 
analyzed the results given by the soft sensor P(9) according 
to the two-phase procedure and the Test set of almost N 
surveys, belonging to the same half year of the Training set:  
the measures of the ambient parameters were taken hourly, 
but missing data for some hours are possible in both sets.  

In Fig. 3 the plot related to the soft sensor P having the 
smallest overall σP  = 0.806 is compared with the one of P(9), 

which provides a reduced value σP(9) = 0.75. The standard 
deviation errors of  P(9)  and of the best sensor P correspond 
to the standard deviations of the substitution error for a Test 
of size 1800 that has been subdivided in C = 40 subsets of 
the temperature range (a similar behavior is given also in 
hour range). The averaging procedure reduces the standard 
deviation for the most part of the surveys. 
 
 

 

 
 
Fig. 4. Histogram of the standard deviations for the substitution 

error (for temperature Ta1) of the best soft sensor P (top) among the 9 
soft sensors used in averaging procedure and  the average soft sensor 
P(9)  (bottom). 

 
Figure 4 shows that both the best sensor P and the 

average sensor P(9), give errors having a Gaussian-like 
distribution but with a slightly longer left tail. Moreover, the 



error distribution for P(9) is more centered than for P. 
As to concern the mixture strategy applied with equal 

probability weights we built two different soft sensors: 
M(Q,P) as the mean of the outputs of the single soft sensors Q 
and P and as the mean of three outputs of soft sensors of two 
different types Q, P and U. Fig.5 shows that the error 
distribution for  M(Q,P,U) has similar tails, but a bimodal 
shape, which is probably due to the mixture mechanism. 

 
  

 

Fig. 5. Histogram of the standard deviations for the substitution 
error (for temperature Ta1) for the mixture sensor M(Q,P,U)  providing 
the best performances  in Table 1. 

 
  Table 1 reports the numerical results for three air 

ambient parameters (air ambient temperature, air contact 
temperature and air humidity) in four points of the 
monument achieved by different types of soft sensors 
(single input type, multi-source type, mixture-of-experts), 
which have been trained for a larger set (N = 1800) in 
several ways (in the Table 1 the soft sensor having the best 
σ value for an ambient parameter is reported in bold). 

 
Table 1. Overall standard deviation errors for twelve air ambient 
parameters: P and Q are single input soft sensors, U is a tri-
dimensional input soft sensor, M(Q,P) and M(Q,P,U) are mixture-of-
experts (performance for each parameter the best σσσσ is given in bold). 

 Q P U M(Q,P) M(Q,P,U)  

Ta1 0.7075 0.6209 0.6631 0.6233 0.6148 

Ta2 0.6529 0.6050 0.6096 0.5919 0.5785 

Ta3 0.6529 0.5986 0.6295 0.5920 0.5899 

Ta4 0.7046 0.6369 0.9940 0.6289 0.6846 

Tc1 1.8813 1.8602 1.8986 1.8083 1.8088 

Tc2 0.6859 0.6639 0.6577 0.6367 0.6268 

Tc3 0.6651 0.5934 0.5977 0.5792 0.5564 

Tc4 2.6363 2.6409 2.5715 2.6172 2.5632 

Ha1 4.6086 4.0235 4.0168 4.0122 3.8597 

Ha2 3.9134 3.6341 4.0497 3.5820 3.5734 

Ha3 4.1744 3.9343 4.0774 3.8079 3.7398 

Ha4 5.8507 4.2076 4.7761 4.4568 4.3150 

 
It can be observed that the concept of mixture allows to 

realize the fusion of  three different  soft sensors and of 

different type (column M(Q,P,U)), and to obtain the best 
variance reduction. In fact the performances for every 
ambient parameter are the best for ten ambient  parameters 
out of twelve.   

6. CONCLUSIONS 

Different strategies for error variance reduction in 
measuring ambient parameters have been proposed in 
building new soft sensors: an averaging procedure of single-
source soft sensors with homogeneous behavior to be used 
when only one input source is available; the mixture-of-
experts and the direct data fusion by the Elman mechanism 
having a tri-dimensional input space, when input from multi 
sources are available. 

Every type of soft sensors implemented the Elman 
recursive mechanism and was trained on a rich Training set 
and tested on a similar Test set to validate their 
performances in the cultural heritage application.  

The averaging procedure, applied to single–input soft 
sensors having similar standard deviation, succeeded in 
reducing the standard errors. 

The multi-source soft sensor, which directly makes the 
fusion of two different input sources, was designed, 
implemented and statistically analyzed. Its performance is 
similar and not much better than the one of the best single 
source soft sensor. 

The mixture paradigm was adopted for combining  soft 
sensors of different types and in different way, according to 
the available knowledge on probabilities to be associated to 
each expert. 

The mixture of three soft sensors (two single-input 
sensors and a multi-input sensor) predicted values with 
improved accuracy for almost every ambient parameter. The 
validation procedure applied to this new sensor substantially 
revealed a superior behavior in monitoring the ambient 
parameters at each hour of the day and in all  temperature 
range for a long period. However, the averaging procedure 
of several of such soft sensors could be again applied to this 
type of multi-source sensor, based on the mixture paradigm, 
to further improve  the variance reduction. 
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