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Abstract: This paper presents the preliminary results of a 
research aimed to evaluate the effect of the measurement 
process on the effectiveness of control charting. To achieve 
this goal, the authors propose propagating the uncertainty of 
measurement through the control charting process using the 
Monte Carlo simulation technique (MCS).  
Results are shown, evidencing that measurement uncertainty 
affects significantly the effectiveness of control charts an 
that the influence is different depending on the nature of the 
uncertainty contribution.  
  
Keywords: Measurement Uncertainty, Control Charts, 
Monte Carlo Simulation, Average Run Length.  

1. INTRODUCTION 

Quality assurance involves organizing all industrial 
efforts to satisfy customers’ demands for better products. 
Nowadays, an effective quality assurance system is 
characterized by the correct use of data in different feedback 
cycles inside the company, by giving priority to preventing 
defects or imperfections on the final product [1]. Preventive 
actions are necessary since the very first stages of process 
planning, to assure that the processes will operate in target 
with minimum variance. In this context, the importance of 
statistical processes control (SPC) is justified because of its 
applicability on both manufacturing and management 
processes. SPC uses control charts or process behavior 
charts (as denominated by Wheeler [2]), to identify special 
causes of variation and keep processes under statistical 
control. When applied according to the continuous 
improvement philosophy, SPC allows the reduction of 
process variability, minimizing the quality loss for the 
specific production. 

Regardless the type of control chart, the effectiveness of 
SPC is influenced by sampling variations. Indeed, any 
control chart produces false alarms, as well as it omits 
signals of process change. Furthermore, the effectiveness of 
SPC also depends on the quality of the data used to plot the 
chart.  

Several authors studied the effect of measurement errors 
on Shewhart´s control charts [3 - 7]. Most of these authors 
focused on the average and range or average and standard 
deviation charts, passively operated to detect process 
disturbances by means of the comparison of each sequential 

reading with 3σ control limits. The detection of an out-of-
control condition is usually made by the classic rule “one 
point beyond the control limits”. The probability of 
intervention or its inverse, the average run length (ARL), are 
adopted as performance indices. Measurement errors are 
represented by the normal distribution, which parameters are 
assumed constant in time and independent of the value of 
the measurand. The authors reported that, under this set of 
assumptions, measurement errors affect relevantly the 
performance of control charts: they increase the probability 
of false alarms and reduce the sensitivity of the control chart 
to detect process disturbances. 

The main objective of the research reported in this paper 
is to evaluate the effect of the measurement process on the 
effectiveness of control charting. To achieve this goal, the 
authors propose propagating the uncertainty of measurement 
through the control charting process using the Monte Carlo 
simulation technique (MCS). The use of this technique in 
metrology is not new, but only recently the Supplement 1 of 
the Guide to the Expression of the Uncertainty in 
Measurement [8] has been issued, establishing good 
practices for the application of MCS in the evaluation of 
measurement uncertainty. 

The key hypothesis of the reported research is that the 
indices of control chart performance, like ARL, are metrics 
to which the GUM concept of measurement uncertainty [8, 
9] can be successfully applied. Results of simulated process 
analyses and real industry applications are presented and 
discussed.  

 
2. METHODOLOGY  

2.1 Method of propagation of uncertainty 

Computer simulation can be considered a tool of great 
value when a complex mathematical model is used to 
describe a technical system or when the model does not 
allow an analytical solution. The evaluation of mathematical 
models by random sampling of probabilistic distributions is 
known as the Monte Carlo simulation technique. 

The evaluation measurement models using the MCS 
technique is carried out in two steps [10]. The first one 
consists of establishing the measurement model, while the 
second involves the model evaluation. The fundamental 
differences between the classic method and the MCS are the 



type of information that describes the inputs quantity and the 
manner in which the information is processed to evaluate the 
measurement uncertainty. In the classic method, each input 
variable must be characterized by its probability density 
function (PDF), average, standard deviation and degrees of 
freedom. In MCS, the degrees of freedom are not involved 
in the calculations, but the knowledge about how many 
sampling variation is present in the input data is relevant for 
the analysis of the results.  

In MCS, the output distribution will be obtained from the 
evaluation of the mathematical model through the 
combination of random samples of the input variables, 
respecting their probability distributions. Therefore, MCS 
produces the propagation of the PDFs of the input quantities 
through the mathematical model of the measurement. The 
result is also a PDF, that describes the measurand values 
which are consistent with the available information.  For this 
reason, it is known as "method of the propagation of 
distributions". 

 
2.2 Propagating measurement uncertainty through 
control charting 

The objective of control charting is to detect signals of 
process change. Typically, estimates of process position and 
process dispersion are charted. These statistics are calculated 
using small samples, called subgroups, which are drawn 
from the process output periodically.  

In a real industrial situation, an initial process run is 
made and provisional control limits are calculated from the 
collected data. If the process shows a reasonable degree of 
control, these control limits are used for process supervision. 
If the process is not under control, corrective actions are 
executed to eliminate special causes and new limits are 
calculated. All the actions that are performed until the 
control limits are defined characterize the so called “Phase 
1” of SPC. When the concept of measurement uncertainty is 
accepted and applied to the data used to calculate the control 
limits, it becomes clear that an uncertainty of the control 
limits exists, that results from the propagation of 
measurement uncertainty though the “Phase 1” of SPC. The 
higher the uncertainty of measurement, the larger will be the 
region within which the true value of the control limits 
could be.  

A simulation was performed to show the effect of 
random and systematic contributions to measurement 
uncertainty on the control limits. The manufacturing process 
model and its parameters have been obtained from a real 
machining operation, i.e. µ=50,698 mm and σ=5 µm. The 
uncertainty of measurement also describes the measurement 
process that is in fact performed for control charting, i.e. 
U95%=4.5 µm.  

Figure 1 shows that random effects increase the data 
variation and enlarge the distance between control limits, 
with almost no effect on the position of the process. On the 
other hand, unknown and residual systematic errors could 
produce a shift on the process position chart, as shown in 
figure 2. In these figures, the subgroups’ averages, grand 
average and control limits drawn in continuous lines 
correspond to the process as the operator can perceive it by 
measurement. In dashed lines the grand average and limits 

calculated using values of the measurand that are consistent 
with the measured values and the information that is 
available on measurement uncertainty. 
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Figure 1: Effect of random measurement errors on the average control 

chart.  
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Figure 2: Effect of systematic measurement errors on the average 

control chart. 

In figure 3, histograms depicting the distribution of the 
values of the grand average and control limits obtained by 
repeated simulation can be observed (1000 simulation runs). 
In this simulation, the original measured values have been 
preserved, but different values of the measurand that are 
consistent with the declaration of measurement uncertainty 
have been generated.    
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Figure 3: Empirical distribution for grand average (middle) and 

control limits (right and left side) due to the effect of measurement 
uncertainty. 



Once the control limits are defined, process supervision 
begins on a periodical basis. For this purpose, the operator 
draws new samples from the process output, calculates the 
statistics of process position and process dispersion and 
compares these statistics with the respective control limits. 
If the statistics fall within the control limits, it is said that the 
process remains in statistical control. If any of the statistics 
fall outside of the limits, a special cause of variation could 
be acting and a reaction plan should be triggered. This 
process supervision stage is known of “Phase 2” of SPC.  

The average run length (ARL) is an accepted index to the 
performance of a control chart to detect process variations 
during “Phase 2”. It is the average of the values of run 
length (RL) that could be obtained from a large number of 
control charts plotted with random data sampled from the 
same process. The RL is the number of samples that are 
necessary for a given chart to detect a change in one of the 
process parameters, computed from the moment in which 
the change happens to the moment in which the chart 
produces the corresponding signal.  

To characterize this phenomenon, the above-reported 
simulation has been extended to the “Phase 2”, introducing a 
disturbance of the process mean. After analyzing the control 
chart plotted with measured values, a RL=21 subgroups was 
obtained. For the 1000 charts simulated with values of the 
measurand, the RL presented high variability. The empirical 
distribution of these run lengths is strongly asymmetric 
where 50 % of the obtained values are equal or less than 32 
and 95 % are less than 370 (see figure 4).   
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          Figure 4: Empirical distribution of possible values of run lengths 

due to measurement uncertainty. 

These preliminary results show that a single control chart 
obtained by sampling a given manufacturing process can be 
analyzed using MCS to evaluate the effect of measurement 
uncertainty. Nevertheless, the analysis of a unique control 
chart can not consider the effect of sampling variation, 
relevant in SPC. Because of this, two different cases have 
been addressed in this research. The first analysis has been 
performed on real measurement data, obtained during the 
long-term operation of an industrial machining process. In 
the operation interval several out of control signals have 
been detected by means of an individual values and moving 
range control chart, generating several corrective actions and 
process adjustments.  Thus, in this case, the values of RL 
can not be calculated, because the instant in which the 

process disturbance occurs is unknown. Instead, the 
dispersions of the number of points identified below the 
lower control limit (LCL) and above the upper control limit 
(UCL) have used as index to the effect of measurement 
uncertainty on the control chart performance.  

The second analysis has been made using only simulated 
data. An average and range chart with subgroup size equal 
to 5 has been used to study the same process under the effect 
of different measurement uncertainties. In this analysis, the 
magnitude and timing of the process disturbance is 
controlled by the mathematical model. Then, the value of 
the RL can be calculated and its statistics used as indices to 
the effect of measurement uncertainty. 

 
3. SIMULATION RESULTS  

3.1 Analysis with real industrial data 

 The manufacturing process distribution model and its 
parameters have been obtained from a real machining 
operation (µ=50.6958 mm and σ=4.4 µm). These estimators 
have been calculated from a set of 2948 observations, 
obtained during three months. The normal probability plot 
(figure 5) shows that the long-term process distribution is 
acceptable for conventional control charting.  
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Figure 5: Process normal probability plot. 

The control limits of the chart for individual values have 
been calculated using the first 100 observations. Using these 
control limits, out of control situations have been identified 
and counted, stratifying the signals below the LCL and 
above the UCL, respectively 350 and 8 points. 
Unfortunately, in a real SPC operation it is not easy to know 
how many of these signals are actually due to special 
causes; indeed, several of them can be false alarms. 

The reason of the asymmetry in the number of signals 
above and below the control limits can be understood when 
considering some details about the operation of the process 
and its variation: 

• The process target is 50.698 and its variation (6σ) is 
considerably smaller than the product tolerance.  

• The control limit has been set to the target.  
• The characteristic is an internal diameter and the 

part is scrapped if the value is bigger than the upper 
tolerance limit.  



• The diameter has a natural trend to diminish because 
of tool wear and the process presents structural 
variation, as depicted in figure 6. 

 
Figure 6: Control chart for individual measurements  

Because of this context, the operator was predisposed to 
let the process run, even when the chart already produced a 
point below the LCL. There is no loss of quality, the life of 
the tool is extended and he feels safe, because it is less 
probable to produce parts with diameters exceeding the 
upper tolerance limit. 

Afterwards, 10.000 control charts were derived from the 
original one applying MCS. Each chart was built with a 
sequence of values of the measurand that are consistent with 
the original measured values and the declaration of 
measurement uncertainty. The “Phase 1” produced different 
control limits for each simulated chart. Each pair of limits 
was extended to identify out of control signals during the 
corresponding “Phase 2”. The signals of out of control in 
each chart were counted and stratified, in a similar manner 
than above.  

The measurement model used in these simulations 
included repeatability, residual offset and resolution. The 
standard uncertainty due to repeatability was σe=2 µm 
(normal pdf), the interval within which the residual offset 
could be was a= ±1 µm (uniform pdf) and the resolution was 
Res=1 µm (uniform pdf). These values were obtained during 
the uncertainty assessment of the bore gage actually used for 
process control.  

The histograms in figures 7 and 8 show the dispersion of 
the number of points due to the effect of measurement 
uncertainty, as well as the corresponding number of signals 
found in the chart built with measured values (red line).  

 
      Figure 7: Distribution of signals below the LCL. 

 
Figure 8:  Distribution of signals above the UCL 

3.2. Analysis with simulated process data 

In this analysis the process parameters remained the 
same, but the measured values were simulated using a 
standard routine for the generation of normally-distributed 
numbers. Thus, the simulated data does not represent a 
process as described in the section before, but a process that 
is under control in the classic sense, i.e., it presents purely 
random variation. An average and range control chart was 
applied, being the subgroup size n=5. The control limits 
were estimated using 100 subgroups to reduce the impact of 
the sampling variation on the control limits. 

 The measurement model was also the same used in the 
previous section, but the values of each contribution were 
changed according to a factorial analysis (23). The lower 
value of each contribution is set to zero; the upper, to the 
value reported in the previous section. 

 The perturbation of the process mean was introduced 
after the definition of the control limits. The simulation 
continues until a signal of out of control is generated by the 
averages’ control chart (i.e. a point beyond the control 
limits). Thus, the value of RL is obtained by counting the 
number of subgroups between the perturbation and the 
signal. Two values of displacements have been studied: δ=0 
and δ=1. In the first case no disturbance exists and the 
process remains in control during “Phase 2”. This condition 
makes possible the study of the false alarm rate. The second 
condition corresponds to a process shift that is equal to the 
standard deviation of the process divided by the root of 
subgroup size (√5).  

To evaluate the simultaneous effect of sampling and 
measurement uncertainty, 500 charts were built with random 
measured values sampled from a process with unchanging 
parameters. Afterwards, each of these charts was used to 
simulate 500 group of values of the measurand that are 
consistent with the uncertainty of measurement. The output 
of the complete simulation process is a matrix containing 
500x500 values of RL.  

Two statistics calculated from the values of RL have 
been used to characterize the effect of measurement 
uncertainty. The first one is the grand average of the run 
length across the entire matrix; the second one is the average 
of the standard deviation of the values of RL that are 
obtained across the effect of measurement uncertainty. 



Figure 9 shows the results of these statistics (color maps 
have been used to represent the simulation results in the 3D 
domain of measurement uncertainty influence quantities). 

The graphics in the top of the figure correspond to the 
grand average of RL; the graphics on the bottom, to the 
average standard deviation of RL values.  
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Figure 9: The grand average (top) and the average standard deviation (down) of the run length, studied for a process under control (left) and a 

process in which the mean was disturbed (right). 
 

4. DISCUSSION 

Both cases above-described contribute to understand the 
effect of measurement uncertainty on control charts, 
particularly, on process position charts like individual values 
chart or subgroup averages charts.  

The first analysis is focused on a process of the real 
world, operated in such a way that the theoretical 
assumptions that rule the application of control charts are 
barely satisfied. In spite of that, the particular combination 
of statistical tool and measurement process was efficient 
enough to improve the stability of the process and also its 
capability from Cp=0.7 to Cp=2 in less than six months with 
almost no investment.  

The real control chart run in the shop floor presented 350 
signals below the LCL and 8 signal above the UCL. The 
distributions of the signals for the 10.000 charts built with 
simulated values of the measurand show that the effect of 
the measurement process could be relevant. In particular, the 
average of the number of signals below the LCL in the 
simulated charts is significantly smaller than the number of 
signal produced by the real chart (see figure 7). There is also 
a heavy dispersion between the minimum and maximum 
values found. As the measurement uncertainty contributions 
are reduced (not shown), the dispersion also diminishes and 
the average number of signals below the LCL approaches 
progressively the value of 350, obtained by the real chart. In 
the limit, when all the contributions to uncertainty are set to 
zero, the dispersion disappears and the number of signals 
repeats for all the simulations.  

The behavior of the number of signals above the UCL is 
similar regarding the dispersion, but the effect on the 
average is less significant. The description above helps 
understanding how the results of the simulations have to be 
interpreted and provides the context to discuss the results of 
the simulated process.  

The second analysis allowed the use of the statistical 
properties of the RL to evaluate the impact of different 
contributions to measurement uncertainty. For the chart used 
in the simulations, the theoretical values of ARL are 370 for 
 δ = 0 (i.e. a stable process) and 44 for  δ = 1 (i.e. shift of the 
mean equal to the standard deviation of the sample average). 
These theoretical values are obtained when the control limits 
are positioned exactly at nσ⋅± 3  of the grand average.  

Given that the initial run was simulated with a large 
number of subgroups, the average of the RL approaches to 
the theoretical ARL when the measurement uncertainty 
contributions are set to zero (see graphics on the top of 
figure 9). In this case, the average standard deviation of the 
RL values is zero, because the variation is exclusively due to 
the manufacturing process (see graphics on the bottom of 
figure 9). In presence of measurement uncertainty, the grand 
average and the average standard deviation of the RL values 
are modified. In particular, it can be observed that:  

• The grand average is more affected by the residual 
offset than by the resolution or the repeatability; 

• The average standard deviation of the values of RL 
that are obtained across the effect of measurement 
uncertainty is more affected by the repeatability than 
by the resolution or residual offset.  



When the process is under control (δ=0), the grand 
average of RL values tends to diminish, resulting in a control 
chart that is more prone to produce false alarms (graphic in 
the top-left of figure 9). When the mean of the process is 
disturbed (δ=1), the grand average increases, being so the 
chart less sensitive to the changes of the real process 
(graphic in the top-right of figure 9).  

These results can now be analyzed from the viewpoint of 
the propagation of measurement uncertainty. First, it is 
necessary to define the measurand. The authors propose 
using the mean of RL as a measure of chart performance for 
each value of δ. Thus, its best estimate is the grand average 
of the RL values, computed across the effect of sampling 
and across the effect of measurement errors. The bigger the 
difference between the theoretical value of ARL and this 
estimate, the bigger will be the effect of measurement 
uncertainty on the performance of the control chart.  

Then, it is necessary to associate an uncertainty to the 
estimate. In this case, two main contributions to uncertainty 
can be identified. The first one is natural the sampling 
variation of the average RL, as computed from the repeated 
simulation when the contributions to measurement 
uncertainty are set to zero. The second one can be obtained 
from the average standard deviation across the effect of 
measurement errors, as depicted in figure 9 (graphics on the 
bottom). Thus: 

            ( ) RLTV ukRLRLmean ⋅±=                              (1) 

where k is an expansion factor. The understanding of this 
dual contribution to the uncertainty of the performance 
measure is important in the everyday use of control charts. It 
means that the performance of an SPC scheme depends on 
sampling decisions as well as from measurement decisions. 
Increasing the size of subgroups or changing the statistics 
used to supervise the process will add no value if the 
measurement uncertainty is excessive. On the other hand, 
high accuracy measurements will not improve the 
performance of a chart if poor sampling decisions are made.  

5. CONCLUSIONS 

In the previous sections it has been shown how the effect 
of measurement uncertainty can be propagated by Monte 
Carlo simulation, to quantify the performance of a given 
type of control chart, applied to supervise certain 
manufacturing process. 

Two different simulations have been show. One 
performed using real industrial data and the other with 
simulated data, generated using parameters of a real process. 
In both cases the effects of measurement uncertainty were 
significant, despite the relationships between the tolerance 
and the measurement uncertainty were reasonable.  

Finally, the grand average of the run length, obtained 
across sampling and measurement variations, has been 
defined as a measure to the performance of a control chart. It 
has been shown that the effect of measurement uncertainty 
can be isolated, processing properly the values of RL 
obtained by repeated simulations.  

In opinion of the authors, the results here presented are 
only preliminary and more efforts are needed to make clear 

the complex interaction between measurement and 
manufacturing process variations in SPC schemes.  
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