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Abstract: The determination of the uncertainty of 
measurement results is one of the most demanding but 
unpopular tasks in metrology. One of several reasons 
for this fact is the lack of well-structured models of 
non-ideal measurement processes on one hand and of 
qualification processes, which determine measurement 
uncertainties, on the other hand. Easily available and 
universally valid models would greatly help to im-
prove measurement quality. But since process model-
ling is very laborious, practitioners are additionally 
confronted with cost-benefit questions. This paper 
starts with the most popular but rather incomplete er-
ror model and, on the basis of Signal and System The-
ory, derives a quantitative structure of the non-ideal 
measurement process. This structure is comprehensive 
and open for further and more challenging extensions. 
 
Keywords: non-ideal measurement process, error quantities, 
erroneous measurement results 
 

1. Introduction 
 
The "Guide to the Expression of Uncertainty in 

Measurement" (GUM) [1] provides extensive advice 
for a coherent declaration of measurement uncertain-
ties. The authors of hundreds of papers and guidelines 
have been interpreting GUM, trying to apply it to their 
specific needs. Discussions about this topic tend to be 
endless. 

Of course the procedure of uncertainty analysis in 
terms of measurement quality takes place at the very 
end of the measurement chain and – metaphorically 
speaking – so do most discussions. 

Though nobody questions the importance of the 
manifold procedures occurring on the different paths 
within a measurement process, even measurement ex-
perts seldom take the time to go beyond summary 
qualitative cause and effect considerations (Figure 1). 
The question should arise as to where errors originate. 
Reliable quantitative results concerning measurement 
quality are therefore rare. 

On the other hand, GUM makes it quite clear that 
the starting point for every uncertainty analysis is al-
ways some kind of model, however simple it may be. 
Of course GUM itself cannot be expected to deliver 

models for any imaginable measurement task. Their 
number would be infinite. 
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Figure 1. Qualitative cause and effect (Ishikawa) diagram. 

 
The question thus arises whether there might be 

any fundamental and quantitative models available, 
which are based on general considerations of meas-
urement science and which are independent of practi-
cal applications. And indeed, this is the case. 

 

2. Analysis 
The following sections base on the simple and 

most commonly used model of error analysis. A more 
promising, but also more demanding concept of signal 
and system theory will be presented then. It will be 
shown that both models can be merged for further de-
velopment. 

 

2.1  The Most Commonly Used Error Model 
 
One of the most famous structures concerning 

measurement error quantities ey(t) is quite simple. Ini-
tially the measurement process M is assumed to be 
ideal so that, according to the "Fundamental Law of 
Metrology" [2], the transfer behaviour is represented 
by the ideal transfer function matrix G = I (unit ma-
trix): 

(t) = (t) = (t)ŷ G y I y  

Therefore, error quantities have to be zero in an 
ideal case. The equation thus is rewritten as: 

!(t) (t) (t) =ˆ −ye = y y 0  



But for the general non-ideal case, the error equa-
tion in its standard form remains: 

(t) = (t) (t)ˆ −ye y y  

Because of its assumed ideal behaviour the meas-
urement process M can even be omitted in the signal 
impact diagram (Figure 2), because the output is iden-
tical to the input. This simplification is quite common, 
especially in control engineering. 

However, since all measurement results  are 
erroneous in practice, as we know, we have to add a 
place, where error quantities may after all 
interfere. For simplicity reasons, we assume that this 
happens linearly. 

(t)ŷ

(t) ≠ye 0
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Figure 2. Most commonly used error model. 

 

A further rearrangement of the error equation men-
tioned above confirms this fact: 

(t) = (t) +ˆ yy y e (t)  

This leads to the conclusion that erroneous meas-
urement results consist of the measurement quan-
tities of interest y(t) and the measurement error quanti-
ties e

(t)ŷ

y(t). 
In this model all imaginable error contributions 

have been gathered which could have influenced the 
measurement results, whether they are of systematic 
or random nature and whether they are known or un-
known. 

Sometimes we speak of measurement noise ey(t) 
(random errors) assuming that deterministic parts of 
the overall measurement error quantities ey(t) have al-
ready been omitted. 

In addition we are normally confronted with a sec-
ond source of noise, the so-called process noise v(t) of 
the process P. Since this one does not deliver contribu-
tions to the measurement error quantities ey(t), we 
need not consider it here. 

One of the disadvantages of this simple and fa-
voured model – which is moreover mathematically 
correct – is its apparent lack of the (ideal) measure-
ment process M0 (Figure 3). 
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Figure 3. The apparent lack of the ideal measurement proc-

ess M0. 
 

And still, the question remains open: Where do er-
ror quantities ey(t) come from? 

This conventional error model may help in simple 
cases, for instance if graphs of systematic errors of a 
non-ideal measurement process M are already avail-
able, delivered for example by a calibration process C. 
As soon as we take measurements with this now well-
known measurement process M, we correct the non-
ideal situation by subtracting known systematic error 
contributions from the measurement result in the 
qualification process Q. 

But this structure is less helpful in more demand-
ing cases, where we do not have quantitative error 
specifications and where we urgently need informa-
tion as to where and how these error quantities 
emerge. Especially the influence and amount of the 
so-called disturbance quantities vM(t) and loading 
quantities zM(t) concerning the non-ideal measurement 
process M are not explicable at first sight. 

Though it is clear that such a structure does not 
represent a physical reality, since error quantities ey(t) 
are the result of non-ideal situations around and within 
the measurement process M, the mathematical defini-
tion of errors sanctions this structure, although admit-
tedly only in a formal way. 
 

2.2  Extended Error Model 
 
Physical procedures within a measurement process 

M should be discussed according to the cause and ef-
fect principle. This is necessary to be able to describe 
its non-ideal behaviour. And we want to handle dis-
turbance quantities imposed on and loading quantities 
resulting from the measurement process M. 

This requires a tight integration of the process P in 
front of the measurement process M on the one hand 
and of the measurement qualification process Q be-
hind the measurement process M on the other hand. 

We start with process P, especially with the meas-
urement quantities of interest y(t), if we can acquire 
them directly. 

0 would map those quantities ideally. 
Now, we rearrange the error equation in a way that 

provides an answer to the question as to where the er-
ror quantities originate: 

ˆ(t) (t) (t)= −ye y y  

While this may look trivial from the point of view 
of the most commonly used error model the answer 



may be less obvious: The errors stem from the non-
ideal measurement process M, as outlined in the fol-
lowing signal impact diagram (Figure 4). 
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Figure 4. Extended error model [2]. 

 
Here the measurement quantities of interest y(t) 

are assumed to be physical quantities and to be well 
defined. But their temporal and spatial values are un-
known. This is also true for the error quantities ey(t): 
Their temporal and spatial values are unknown as 
well, due to their dependency on the unknown meas-
urement quantities y(t). 

Nevertheless, the structure of this measurement 
model forms the basis for error analyses in any direc-
tion. We are able to discuss, to calculate, and to simu-
late as if all quantities were well known. And we look 
from the process P in the direction from cause to ef-
fect. 

Practitioners tell us that the most critical region 
concerning the quality of measurements is the sensor 
process S attached to the process P. But where exactly 
is this sensor process S attached (Figure 5)? 
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Figure 5. Structured measurement process M [2]. 

 
Each sensor in this multi-sensor net S delivers an 

electrical signal. But normally we are not interested in 
those additional physical quantities yS(t), since we 
need the estimate of the acquired quantities y(t) of in-
terest. Therefore we provide a second sub-process, the 
reconstruction process R, which delivers the estimates 
of those quantities of interest y(t). The reconstruction 
process R always represents the mathematical inver-
sion of the sensor process S. This inversion considers 
all possible, but unwanted cross effects among all sen-
sors and thus corrects them. Though theoretically pos-
sible, dynamic inversion is restricted in practice to 
very simple cases of low order and to low signal-to-
noise (SNR) situations. 

That means that in principle all non-ideal phenom-
ena – like nonlinearities – in the sensor process S can 
be corrected within the reconstruction process. In con-
sequence, error quantities ey(t) (Figure 5) will only 
appear if for various reasons the reconstruction proc-
ess R is not able to settle his task completely. 

Very often not all quantities and parameters of in-
terest of a process can be measured directly by sen-
sors. But if there are causal relations between the de-
sired, but immeasurable quantities z(t) and the meas-
urable substitutes y(t) in the sense of cause and effect, 
described by models, it is possible to determine quan-
tities and parameters of a process by so-called model-
based measurement. 

By extending the basic structure of Figure 5 we 
obtain for example the open-loop observer OLO, 
which estimates immeasurable quantities using the 
model of sub-process SP (Figure 6). It is obvious that 
in addition a new type of errors will appear, the ob-
server errors ez(t). 
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Figure 6. Model-based measurement by an open-loop ob-

server  
 

2.3  Comparison between Error Models 
 
Now, where is the difference to the first, simpler 

error model? Both models claim to use the same error 
equation. But equations are unrelated to questions of 
cause and effect. 

If we assume that a non-ideal measurement proc-
ess M may be divided into a parallel connection of the 
ideal nominal measurement process M0 and the devia-
tion process ΔM which is assumed to be responsible 
for the error quantities, we see a new type of structure 
in the signal impact diagram (Figure 7). 
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Figure 7. Ideal measurement process M0, non-ideal devia-
tion process ΔM and non-ideal measurement process M. 



Interestingly, we find in this new structure both 
forms of the error equation in one diagram. 

(t) = (t) (t)ˆ −ye y y  

and 

(t) = (t) + (t)ˆ yy e y  

The main difference between the two concepts is 
tha

ple, one cause might be a nonlinear static 
tran

 the two concepts 
has

wing section we have to focus on de-
tail

s was shown in [2], there are only three different 
rea

 

• non-ideal sponse of the system 

M 

t we now see where the errors come from and that 
we may start modelling the causes of these errors sys-
tematically. 

For exam
sfer response line, where the vertical differences to 

the ideal nominal line are the deltas (Δ) depending on 
the actual measurement quantity y. 

Insofar no inconsistence between
 appeared. 
In the follo
s in order to be able to discuss the deviation proc-

ess ΔM further. This will be done in the time domain, 
but it can be handled in the frequency domain like-
wise. 
 

2.4  Extended Model of the Non-Ideal Meas-
urement Process 

 
A
sons for the non-ideal behaviour of any system: 

• disturbing quantities v(t) affecting the system 

• loading quantities z(t) of the system affecting the
system in front of it 

transfer re

This is especially true for the measurement process 
and may again be illustrated by a signal impact dia-

gram (Figure 8). 
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Figure 8. Two different types of error quantities 

due to non ideal
measurement

due to loading

It shows a new error category, the "error quantities 

0
 due to loading". These quantities amount to the 

usual measurement errors e
(t)ye

y(t). 
From this overall structure we open the multivari-

ate non-ideal measurement process M for further in-
spection. To describe the transfer response behaviour 
in the time domain, we use the common state variable 
description shown in Figure 9. Nonlinear effects may 
be integrated in this structure. 

(t) (t) (t) (t)
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where the partitioned matrix P is an overall transfer 
response matrix, serving as a short-form model of the 
whole measurement process M. 
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Figure 9. Common model of a non-ideal process in the time 

domain description 
 
Although this is a very simple structure even for a 

large number of different sensors (sensor net), we 
have to keep in mind that the main practical difficul-
ties lie in the determination of the correspondingly 
large number of matrix elements. The determination 
of these elements has to be done by time-consuming 
calibration (parameter identification). 

Since we want to compare this model with the 
conventional error model (Figure 7), we have to redes-
ign it in order to obtain isolated error quantities with 
separate error paths. 

We show the isolation of the influences of the dy-
namic behaviour of a measurement process M by the 
example of a non-ideal transfer response and by the 
influences of the disturbing quantities vM(t) including 
their dynamic behaviour (Figure 10). This leaves two 
main error quantities, namely the errors edyn(t) due to 
the dynamic behaviour and the errors edist(t) concern-
ing disturbing influences. This procedure is correct at 
least for linear or linearised systems. 
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The same procedure would deliver error quantities 

according to loading effects and parameter deviations. 
Each single hardware component in a measure-

ment chain or in a sensor array may be individually 
modelled by this concept. 

It is worth mentioning that the structures intro-
duced above do not only apply to deterministic sig-
nals, but to random signals as well. Since random in-
put information cannot be described analytically by 
equations, we have to use instead its characteristic val-
ues and characteristic functions, such as arithmetic 
means, variances, distribution functions, correlations 
functions, spectral density functions etc. Conse-
quently, the transfer response of a system is discussed 
with regard to its characteristic values and characteris-
tic functions. 

The same ideas apply to errors, error bars, uncer-
tainties, uncertainty limits etc. which may accompany 
quantities at any point within the measurement chain. 

In this regard the transfer response laws are identi-
cal with the laws of error or uncertainty propagation. 
There is only one transfer response model of proc-
esses. 

 

3.  Synthesis 
 
After these different analysing and refining steps 

we return to a general view concerning the integration 
of a non-ideal measurement process M between proc-
ess P and qualification process Q. 

 

3.1  Process and Measurement Process 
 
The strong interconnections between measurement 

process M and process P (Figure 8) establish a special 
series connection. If the models of both processes are 
given in the state space representation, the two pa-
rameter matrices PM and PP are "multiplied" by the so- 
called Redheffer-Star-Product Matrix S (Figure 11), 
delivered by Signal and System Theory and supported 
by adequate software-packages. 
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Figure 11. Redheffer-Star-Produkt for the multivariable 

series connection of two systems 
 

3.2  Qualification Process 
 
Until now, we have not discussed error correction 

nor uncertainties uy(t) of the measurement results. The 
qualification process Q is responsible for this impor-
tant task (Figure 12). 
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Figure 12. Qualification Process 

 
The qualification process Q estimates the meas-

urement errors ey(t) and the measurement uncertainties 
uy(t) of the non-ideally acquired quantities y(t) as well 
as the immeasurable quantities z(t) (Figure 6). The 
immeasurable quantities have been non-ideally esti-
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mated via models of the process P within the recon-
struction process R. 

The qualification process Q depends on the follow-
ing information: 
• target specifications wQ(t) concerning the required 

quality of the result quantities y(t) and z(t) 
• models of the process P of interest 
• models of the measurement quantities y(t) and z(t) 

of interest 
• models of the non-ideal transfer behaviour of the 

measurement process M 
• models of the non-ideal measurement environment 
• models of the non-ideal measurement procedures 
 

The qualification process Q has to be considered a 
system, too. Signal and System theory as well as Sto-
chastics and Statistics describe it without restrictions. 

The qualification process Q may run like any self-
contained process, either continually in real-time or 
discontinuously as a batch process. Again, all neces-
sary information has to be provided at the proper time 
as an input for signal processing. 

Considering system theoretic structures the qualifi-
cation process Q is an "Open Loop Observer" (OLO) 
with well-known laws and properties. 

A discussion of the details of the qualification 
process Q would exceed the scope of this paper. They 
are treated within GUM [1] and in numerous other pa-
pers. 

 

3.3  Physical and Information Processes 
 
We may look at processes in terms of physical as 

well as information processes. Let us state this more 
precisely: 

 
• Process P, 
 whose quantities and parameters have to be meas-

ured, is a physical process, even if informatics 
tools are involved. 

 

• Non-Ideal Measurement Process M, 
 which is attached to process P, contacting or con-

tact-free, always consists of a non-ideal sensor 
process S and a reconstruction process R (Figure 
5). 

 Due to their attachment to process P, sensors 
within sensor process S are inevitably physical 
processes, too, even if some informatics tools are 
involved. 

 Unlike the processes mentioned above, the recon-
struction process R within the measurement proc-
ess M is an information process, based on models 
of sensor process S and process P, even if some 
physical structures are involved. 

 
• Qualification Process Q, 
 which determines the quality of the measurements 

according to given criteria wQ(t), is an information 
process, even if the hardware running the process 
is of physical nature. 
 
Thus we may state that a measurement procedure 

takes place simultaneously on two levels, on a real 
physical level and on a virtual information level. As 
shown in Figure 13 the separation line runs exactly 
between the sensor process S and the reconstruction 
process R. 

Whereas the physical processes involved are con-
sidered obvious, the ideas about the information proc-
esses often remain vague. For instance: The simplest 
information process within the reconstruction process 
is a scaled gauge; it is the inverse model of the respec-
tive sensor element. 

However, in certain applications, the information 
processes may escalate in number and become very 
voluminous. They are commonly called data mining 
processes. This is true, especially if the number of 
measurement quantities, of sensors, of disturbing 
quantities, of interdependencies, or of qualification 
criteria is very high. 

Sometimes the information processes are called fil-
ter processes (e.g. observer, Kalman filter), because 

directly measureable quantities

not directly measureable quantities

estimation of directly
measureable quantities

estimation of not directly
measureable quantities

uncertainty of directly
measureable quantities

uncertainty of not directly
measureable quantities



they restore model-based measurement results of high 
quality out of noisy sensor information. 

The information processes (reconstruction process 
R, qualification process Q) are based on three impor-
tant information sources: 
• delivered and stored signals of physical processes 

(real and virtual signals) 
• models of physical processes  
• target specifications for all member processes 

 
As long as just the main measurement procedures 

and measurement quality are under consideration, no 
further discussions in the direction of concrete realisa-
tions of instrumental processes are needed. 

 

4.  Conclusion 
 
Not surprisingly, the two error models are identical 

if we just consider the superposition of influences on 
the measurement results. But the extended model pro-
vides an insight necessary to understand and describe 
the quality of measurement procedures. The model of 
the measurement process and the measurement proce-
dure is the core of any error and uncertainty analysis. 
But two problems arise in this respect: Models are not 
easily available and the identification of parameters by 
calibration is awesome, apart from very simple cases 
of everyday measurements. 

Thus, Signal and System Theory as well as Statis-
tics and Stochastics can provide powerful tools that 
are supported by appropriate software packages. 
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