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Abstract: The evaluation of measurement uncertainty is 
based on both, the knowledge about the measuring process 
and the quantities which influence the measurement result. 
The knowledge about the measuring process is represented 
by the model equation which expresses the interrelation 
between the measurand and the input quantities. Therefore, 
the modeling of the measurement is a key element of 
modern uncertainty evaluation. A practical modeling 
concept has been developed that is based on the idea of the 
measuring chain. It gets on with only a few generic model 
structures. From this concept, a practical stepwise procedure 
has been derived. 

Keywords: measurement uncertainty, measurement system, 
model equation. 

1. INTRODUCTION 

In modern uncertainty analysis [1], the knowledge about 
the input quantities is expressed by appropriate probability 
density functions (pdfs), whereas the measurement process 
is represented by a so-called model equation. It expresses 
the mathematical interrelation between the measurand Y  
and the input quantities 1 NX ,...,X  as well as between their 
possible values, η  for Y  and ξ  for X : 

 ( )1M NY f X ,..., X=  and ( )1M Nf ,...,η ξ ξ=  (1) 

The model equation forms the basis for the propagation 
of the pdfs for the input quantities and, in case of utilizing 
Gaussian uncertainty propagation [1], for the propagation of 
their expectation values and associated uncertainties 
respectively. Therefore, the modeling of the measurement is 
a key element of uncertainty evaluation. First approaches to 
a systematic modeling procedure for practitioners were 
made by Bachmair [2], Kessel [3], Kind [4] and Sommer et 
al. [5]. 

2. BASIC RELATIONSHIPS OF THE MODELLING 
CONCEPT  

A model can serve to evaluate the original system or to 
draw conclusions from its behavior. In measurement 
techniques, usually the measurand and other influence 
quantities may be seen as causative signals (causes). The 
system transforms these causal signals into indications or 

output signals (effects) and, therewith, assigns values to the 
measurand. 

In contrast to models used to describe the cause-effect 
behavior, often called measurement equation, for the 
evaluation of the measurement uncertainty an “inverse 
model”, briefly termed “model equation” (1), is needed (see 
figure 1). 

Measurement
processMeasurand   Y Indication    X1

Model equation:   Y =  fM (X1, ..., XN)

Cause Effect

X2    . . . XN

 

Fig. 1. - Cause-and-effect relationship and the model for uncertainty 
evaluation. 

The modeling concept presented [5] is based on the idea 
of the measuring chain which constitutes the path of the 
measurement signal from cause to effect. It mainly refers to 
the ISO-GUM procedure [1] that only applies to linear or 
linearizable models. But basically, the concept presented is 
not limited to this category of models. 

2.1.  Linearization 

Besides applicability to the ISO-GUM procedure [1], 
linear models offer some more benefits, in particular the 
possibility of using the well-commanded instruments of 
signal and system theory and, therewith, for proper 
modeling of time and frequency-dependent systems [6, 7]. 

Basically, linearization is possible if the following 
equation is satisfied: 

 ( ) ( ) ( )
1

N

M M i i i
i

f f x c xη ξ ξ
=

= ≅ + −∑  (2) 

where ξ  is used as an abbreviation for 1 N,...,ξ ξ  and x  for 

1 Nx ,...,x . The ic  are called sensitivity coefficients given by 
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and x  represents the expectation values (best estimates) of 
the quantities X  (see below). 

Equation (2) will usually be satisfied if the following 
assumptions can be made: 

• In narrow ranges around the operating points, the 
functional elements or steps of a measurement may be 
regarded to have approximately linear characteristics 
and can, therefore, be described by first-order Taylor 
series expansion. Figure 2 illustrates this linearization 
and the limits of its applicability. 

• The (steady-state) transmission behavior of a fictitious 
unperturbed measuring system is related to well-
known operating points given by the expectation 
values [ ] [ ]1 1E E =N NX ,..., X x ,...,x  of the input 
quantities. 

• The “real world of measurement” may be taken into 
consideration by means of deviations of values of the 
real influence quantities and other parameters from the 
above “idealized operating conditions”. 

For linearization, one replaces the model equation 
( )1M NY f X ,..., X=  (see equation (1)) with the relation for 

its values, ( ) ( )= + −Mf x c xη ξ  (see equation (2)). 

significant
linearity error

Y, η

y

x

uxb

uxa

Case (a)
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∂fM
∂X x

= c

gbX(ξ )

gaX(ξ )

X,  ξ

uya
uyb

 

Fig. 2. - Linearization of the functional dependency of the output 
quantity Y . Case (a): Linear treatment is possible (equation (2) is being 
satisfied). Case (b): Linearization would lead to erroneous uncertainty 

propagation and a false value for y. 

On the above assumptions, at least in the steady state, 
almost all functional elements or operational steps of a 
measuring system or process, may be represented by a 
generic “perturbed transmission element” having an 
approximately constant transmission factor and deviations 
that represent the imperfection of the measurement. 

Basically, this can be expressed by the following 
relationship: 

 ( )0 0kOUT kIN k k kX X G G Zδ δ= + +  (4) 

where: kINX  – quantity acting at the input of the element k ; 

kOUTX  – quantity at the output of the element k ; 0kG  – 
transmission factor; 0kGδ  – parameter deviation; kZδ  – 
parameter deviation. 

Then, for a linear or linearized model equation, the 
expectation value of the output quantity Y  is 

 [ ] ( )1,...,M Ny E Y f x x= = . (5) 

The uncertainty associated with this expectation is 
obtained from the law of Gaussian uncertainty propagation: 

 
1/ 2

1
2 2

1 1 1

2
N N N

y i xi i j xixj
i i j i

u c u c c u
−

= = = +

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
∑ ∑ ∑  (6) 

where xixj xi xj iju u u r= ⋅ ⋅  is the covariance of the quantities 

iX  and jX , and ijr  is the respective correlation coefficient.  

It should be emphasized that for practical uncertainty 
evaluation almost all measurement systems may be 
represented by linearized models. This might be explained 
by the fact that “good measurement systems” usually show 
(very) low responsivity to perturbing/influencing quantities 
(see case (a) in figure 2). 

2.2.  Non-linear models 

In some cases, such as, for example, in processing large 
signals, certain elements of the measurement process cannot 
be satisfactory modeled by linear transmission elements. 
Usually, the response characteristic (transfer behavior) of 
non-linear elements of measurement systems is 
mathematically described by 

• non-linear algebraic equations, e.g. polynomials, 

• ordinary differential equations, or 

• partial differential equations. 

In practice, preferably polynomials are used. Appropriate 
polynomials that describe the response characteristic at the 
given or desired operating point may be obtained by 
expanding a Taylor series to higher-order terms [1]. Often, 
Volterra series are utilized that originate in distortion 
computation. They describe the output of a non-linear 
transmission element as the sum of the responses of a first 
order, second order, third order operator and so on. If 
applicable, each operator is described either in the time or 
frequency domain with its own transfer function called a 
Volterra kernel [8]. 

If periodic processes are to be described, such as, for 
example, roundness errors, the transfer function may be 
represented by Fourier-series or related expansions. 

For uncertainty evaluation of measurements which are 
described by non-linear model equations, the ISO-GUM 
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procedure [1] cannot be applied. In this case, the so-called 
propagation of distributions is offers an appropriate solution. 

 In accordance with the Bayesian concept of the GUM, 
the (unavoidably incomplete) knowledge about each 
contributing input quantity is to be expressed by means of a 
probability-density function (pdf) ( )Xi ig ξ . The pdfs for the 
input quantities are obtained from the given information 
about them by utilizing the principle of maximum 
information entropy (pme) [9]. The pdf for the measurand 

( ), YY g η , is given by the so-called Markov formula:  

 
( ) ( )

( )( )

1 1

1 1

... ,..., ,...,

,..., ,...,

+∞ +∞

−∞ −∞

= ⋅

−

∫ ∫Y X XN N

M N N

g g g

f d d

η ξ ξ

δ η ξ ξ ξ ξ
 (7) 

where η  are the possible values of the measurand Y. 

From the above pdf, the expectation [ ]=y E Y  and its 
associated uncertainty can be calculated as follows: 

 ( ) ,
+∞

−∞

= ⋅∫ Yy g dη η η  and (8) 

 ( ) ( )
1

2
2

y Yu g y dη η η
+∞

−∞

⎧ ⎫⎪ ⎪= − ⋅⎨ ⎬
⎪ ⎪⎩ ⎭
∫  (9) 

Because equation (9) can analytically be computed in 
fairly simple cases only, modern uncertainty evaluation 
utilizes Monte-Carlo techniques as integration method [10]. 
Figure 3 illustrates this concept of pdf propagation. 

pdf propagation

( ) ( )Y 1 X1 xN 1 N,..., ,...,ξ ξ ξ
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=∫ ∫g g g
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Fig. 3. - Illustration of the concept of pdf propagation [10]. Symbols see 

text. 

From the above basic relationships on uncertainty 
evaluation, it may be concluded that independent of the 
method used – Gaussian uncertainty propagation or pdf 
propagation – an appropriate model equation is an 
indispensable prerequisite of modern uncertainty evaluation. 

3. PRACTICAL MODELING PROCEDURE 

3.1.  Modeling steps 

The practical modeling procedure is structured into five 
elementary steps: 

• 1st step: Describing the measurement. 

• 2nd step: Analyzing the measurement, decomposing it 
into its functional constituents and, in turn, 
establishing graphically the cause-and-effect 
relationship for the fictitious ideal (unperturbed) 
measurement in terms of standard modeling 
components. 

• 3rd step: Inserting all imperfections and effects that 
may perturb the fictitious ideal measurement, 
representing the cause-and-effect relationship 
graphically, and, in turn, mathematically for the real 
measurement. The insertion of imperfections, for 
example external influences, incomplete knowledge 
about parameters and instabilities, is to be carried out 
by utilizing correction factors and deviations from the 
fictitious ideal (nominal) parameters. 

• 4th step: Identifying and including correlation [11]. 
There are two possible ways to include correlation: 
1st way: If correlation is caused by conjoint functional 
dependencies on a third quantity, for example on 
temperature, these dependencies are to be accounted. 
The way to do this is to introduce these dependencies 
in the graphical and, in turn, mathematical cause-and-
effect relationship and, therewith, the correlation will 
be dissolved. This first way is to be preferred. 
2nd way: Correlation is taken into account in 
accordance with the law of Gaussian uncertainty 
propagation (see equation (6)). This way, however, 
requires the knowledge of the estimated or 
experimentally determined value of the correlation 
coefficient [12]. 

• 5th step: Inverting the mathematical cause-and-effect 
relationship to derive the relationship between the 
output quantity and the relevant input quantities, i.e. 
the model equation. 

3.2.  Standard modeling components 

For the required graphical depiction of the cause-and-
effect relationship, only three types of standard modeling 
components are employed: Parameter sources (SRC) to 
provide or reproduce a measurable quantity, transforming 
units (TRANS) to represent any kind of parameter 
processing and influencing and indicating units (IND) to 
indicate their input quantities [5] (see figures 4 to 7). 

3.3.  Example 

The modeling procedure is explained with the simplified 
example of the calibration of a scale [12]. 

• 1st step: Describing the measurement/calibration. A 
non-automatic scale is to be calibrated by means of a 
standard weight. This is carried out under prescribed 
conditions by direct measurement and comparison of 
the indication with the value of the standard given in 
the calibration certificate. 

Measurand: Instrumental error of the scale 

Causal quantity: Weighing value of the standard used 
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Measurement method: Direct measurement 

• 2nd step: Analyzing the measuring process. The 
standard may be considered as parameter source. Its 
imperfect “coupling” with the scale, e.g. caused by air 
buoyancy, magnetic susceptibility etc. might be 
described by a transforming unit. For a simplified 
treatment, the scale itself may be represented by an 
indicating unit. Figure 4 graphically represents the 
idealized (unperturbed) cause-and-effect relationship 
of the above described calibration. 

INDTRANSSRC

1W S

∆W*
INSTR

Measurand

W*
IND

 

Fig. 4. - Cause-and-effect relationship for a fictitious ideal calibration 
of a scale. Symbols: SW  - weighing value reproduced by the standard; 

*
INDW  - indicated quantity; ∆ *

INSTRW  - measurand (instrumental 
error of the scale to be calibrated). 

• 3rd step: Graphical depiction of the cause-and-effect 
relationship of the real measurement. By means of 
deviations and correction factors, the following 
influences and imperfections are to be introduced into 
the graphical cause-and-effect relationship of the 
described calibration: 0S S SW W W∆ = −  is the error of 
the nominal value of the standard used; 

( ) ( )1 1
1 2 80001 1B a S ,k ρ ρ ρ ρ− −= − ⋅ − ⋅  - air buoyancy 

factor, aρ  - air density, Sρ  - density of the standard, 
-3

1 2 1 2 kgm, ,ρ = , -3
8000 8000 kgmρ = , ( )CPLW Pδ  - 

deviation due to the influences of the (temperature-
dependent) air convention and the magnetic field 
strength H ; ( )M aW tδ  - deviation of the scale due to 
the influence of the ambient temperature at . Figure 
5(a) illustrates the real calibration of the scale and the 
appearing influences. Figure 5(b) shows the cause-
and-effect relationship modeled for the real 
measurement. Expressed in mathematical terms, the 
cause-and-effect relationship of the real measurement 
reads: 

( ) ( )
( )

0IND BS S CPL

aM INDINSTR

W W W k W P
W t W W

δ

δ

= − ∆ +

+ + ∆ + ∆
                 (10) 

• 4th step: Identifying and including correlation. For the 
sake of simplification of this example, all involved 
quantities and observations are assumed to be 
independent of each other. 

• 5th step: Model equation. From the cause-and-effect 
relationship of the real measurement (see equation 
(10)), the following model equation is obtained: 

( )
( ) ( )

0IND BINSTR S S

aM INDCPL

W W W W k
W P W t Wδ δ

∆ = − − ∆

− − + ∆
                   (11) 
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Fig. 5. - (a) Simplified example of a calibration of a scale. (b) Cause-
and-effect relationship modeled for the real measurement. Symbols: 

SW  - weighing value provided by the standard; 0SW  - nominal weight; 

∆ SW , ∆ INSTRW  - instrumental errors; ρa , ρ x  - densities of the air and 

the weight; δ CPLW  - imperfect coupling effect of the quantity SW  with 

the instrument; δ MW  - deviation representing the effect of calibration 

conditions CALP ; INDW  - indication; δ INDW  - deviation due to the 
resolution; H  - magnetic field strength [12]. 

After modeling the measurement, the most important 
step in uncertainty evaluation is to evaluate all involved 
input quantities that appear on the right-hand side of 
equation (11) by assigning appropriate probability density 
functions (pdfs) to them. Due to the almost linear model 
equation of the chosen example, the ISO-GUM method [1] 
may be used to determine the measurement uncertainty. As 
to the knowledge about the input quantities: SW  will be 
clearly indicated. The values of INDWδ  can be derived from 
the instrument’s resolution. Information about 0SW  and 

SW∆  should be given in the respective calibration certificate 
issued for the standard. The knowledge about ( )CPLW Pδ  

and ( )M aW tδ  may be taken up from the manufacturer’s 
manual or from the requirements set up in the European 
Standard EN 45501. The parameter Bk  is to be estimated 
based on the knowledge about the ambient conditions and 
about the standard used. 

4. MODEL STRUCTURES AND MEASUREMENT 
METHODS 

Almost all measurement and calibrations can be reduced 
to only a few generic structures of cause-and-effect 
relationships. The structure and the chaining sequence of the 
modelling components in cause-and-effect relationships are 
determined by the method of measurement used [5]. Direct 
measurements result in an un-branched chain of the 
components utilized (see figure 5). 

Other measuring methods are used to achieve higher 
accuracies and to ensure proper traceability of calibration 
results. These methods mostly result in branched cause-and-
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effect chains. Examples are given with the direct 
comparison of two indicating measuring instruments and the 
substitution method. Figure 6 and 7 show the generic 
structures of their cause-and-effect relationships. When 
deriving the mathematical cause-and-effect relationship 
from block diagrams having branched structures, for 
example the above methods, for each branch a separate 
partial equation is to be derived [5]. Thereby, influences and 
imperfections of the commonly used parts of the paths 
should be assumed to be correlated [11]. 

X

X

X0

S0

Measurand

Unit un-
der test

Stan-
dard

∆XSRCX (PCAL)

XTS1 XTSn
. . .

. . .XTX1 XTXm

S - path

X - path

∆XIND = XINDX - XINDS

XSRCX

XSRCS

∆XSRCS (PCAL)

∆XINSTRX (PCAL)
∆XINSTRS (PCAL)

SRCX TRANSX

SRCS TRANSS

  IND

 

Fig. 6.  Generic structure (conjoining chain) of a calibration by 
substitution. Symbols [5]: CALP  -calibration conditions; 0XX , 0SX  -

nominal values for the material measures SRCX , SRCS ; ( )∆ INSTRX P  

- instrumental error at the operating conditions P ; ∆ INDX  - indicated 

quantity; SRCXX∆ , ∆ SRCSX , ∆ INSTRXX , ∆ INSTRSX  - instrumental errors; 

1TX TXmX ,..., X , 1TS TSnX , ..., X  - input (influence) quantities. 

X - path

. . .

S - path

Measurand
X SRC

Unit un-
der test

Stan-
dard

X TX 1 X TX m
∆X INSTR X (P CAL )

X INDX

X INDS

X TS 1 X TS n
. . . ∆X INSTRS  (P CAL )

INDXTRANSX

INDSTRANSS

SRC

 

Fig. 7.  Generic structure of the cause-and-effect relationship of a 
calibration by direct comparison of two indicating measuring 

instruments (forking chain) [5]. Symbols see figure 6. 

5. CORRELATED QUANTITIES IN MODELING 

Correlation is present in many measurements and, 
dependent on the relationship of the correlated quantities, it 
enhances or decreases the combined uncertainty. 
 

In practice, input quantities are often correlated because 
the same physical measurement standard, measuring 
instrument, reference datum, or even measurement method 
having a significant uncertainty is used in the estimation of 
their values [1]. 

When modeling measurements and calibrations in 
accordance with the above procedure (see section 3), it is an 
indispensable prerequisite that the input quantities assumed 
to be correlated really appear in the (graphical depiction of 
the) cause-and-effect relationship and in the model equation 
respectively. 
 

If, for example, a standard weight SW  is established by 
two individual (patched) weight pieces, this is clearly to be 
represented in the graphical cause-and-effect relationship 
(see Figure 8). In case of this example, the (unknown) 
deviations of the patched standards used, ∆WS1 and ∆WS2, 
are correlated quantities due to the presumed calibration of 
the standards within the “same experiment” and in the same 
laboratory respectively. It would not be a correct way to a 
priori combine the two standards or their deviations. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.  (a) Illustration of the application of “patched standards” in 
calibration. (b) Respective cause-and-effect relationship (cut-out). 

Symbols: WS01, WS02 - nominal values of the partial standards used; 
∆WS1, ∆WS2 – instrumental errors of the standards used (correlated 

quantities because they have been determined within the same 
experiment or calibration) 

 
The mathematically expressed cause-and-effect 

relationship for patched standards, derived for example from 
Figure 8(b), will always contain correlated quantities having 
identical signs. For the example depicted in Figure 8, it 
would be 
 

01 02 1 2S S S S SW W W W W= + − ∆ − ∆ .                         (12)
 

Correlation of quantities that are linked additively or, 
always results in an enhanced combined uncertainty [11]. 
This combined uncertainty can easily be derived from the 
Gaussian law of uncertainty propagation [1] that, for the 
example of two correlated quantities 1X  and 2X , yields 
 

1
2 2 2
1 2 1 2x x xTOTAL x xu u u u u⎡ ⎤+ ≤ ≤ +⎣ ⎦ ,                         (13)

 
where 1xu  and 2xu  are the individual uncertainty 
contributions, and xTOTALu  is the total uncertainty 
contribution associated with the combined expectation value 
of the quantities 1X  and 2X . 
 

In case of different signs of two correlated quantities 1X  
and 2X  (see substitution example depicted in Figure 9; 

Patched standard

S1W

Scale

S2W

SRC1

S01W

S1Wδ

S02W

S2Wδ

S2W

S1W

SW

SRC2

TRANS-

-

(a)    (b)
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correlated quantities: 1X  and 2X ), or if correlated 
quantities are multiplicatively related correlation yields a 
decreased total uncertainty contribution: 
 

1
2 2 2
1 20 xTOTAL x xu u u⎡ ⎤≤ ≤ +⎣ ⎦                                      (14) (7.3) 

 
In case of the example depicted in Figure 9, the uncertainty 
would completely disappear in case that the instrumental 
error of the comparator is of systematic nature and 
absolutely stable. This, by the way, is exactly what 
substitution aims at. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.  Example: Graphical depiction of the cause-and-effect 
relationship (simplified) of a substitution measurement. Symbols: 

S
X

1
, 

S
X

2
 - quantities provided by the material measures; 

INSTR
X∆

1
, 

INSTR
X∆

2
 - (correlated) errors of the comparator used (separately) for 

the measurement of the standard and the unit under test; 
IND

X
1
, 

IND
X

2
 - indicated quantities. 

 
 

7. CONCLUSION 

Although if seems not possible to develop a theory that 
allows for a stringent construction of a model, it is, 
nevertheless, possible to achieve systematic modeling based 
on the presented concept. Systematic modeling may be seen 
as an important improvement of uncertainty evaluation. The 
particular concept is applicable to most areas of uncertainty 
evaluation of measurements performed. 
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