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Abstract: Measurements are the key to rational decision 
making. Measurement information generates value, when it 
is applied in the decision making. An investment cost and 
maintenance costs are associated with each component of 
the measurement system. Clearly, there is – under a given 
set of scenarios – a measurement setup that is optimal in 
expected (discounted) utility. Contrary to process design, 
design of measurement and information systems has not 
been formulated as such an optimization problem, but rather 
been tackled intuitively. In this presentation we propose a 
framework for analyzing such an optimization problem. Our 
framework is based on that the basic mechanism of 
measurement is reduction of uncertainty about reality.  
Statistical decision theory serves as the basis for analyzing 
decision making. In this paper we apply the framework to a 
problem that is rather simple but of practical importance: 
how to arrange laboratory quality measurements optimally. 
In particular, we discuss a case in the paper making 
industry, in which the product quality is measured with 
automated quality analyzers and by laboratory 
measurements.      
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1.   INTRODUCTION 

The process industries make use of hundreds of on-line 
and laboratory measurements to monitor and control the 
process [1]. The daily decision making about process and 
product quality by operators and engineers should be 
supported with information systems so that the best practice 
of operation can be achieved continuously. Measurements, 
soft sensors and process simulators form the basis for such 
decision support by reducing the uncertainty about the 
present state of the process and about its future evolution.  

 
When making decisions or when combining information 

from various sources, the uncertainty of information is 
decisive and must be known. Ideally measurements, soft 
sensors and simulators should produce the probability 
distribution of the state of the process and of its predicted 
evolution. In present information systems such uncertainties 

of data are not recorded, and rather often the uncertainty 
analysis has been altogether neglected.  

  
Information from measurements, soft sensors and 

simulators generates value through improved decisions [2], 
because the uncertainty about the state of the process has 
been reduced.  The amount of value generated depends on 
the goal set by the decision maker, including the decision 
maker’s attitude towards risk. The concept of uncertainty is 
rather unfamiliar to process operators and engineers and 
hence risk is dealt with rather implicitly [3].  

 
The optimal measurement system is such that it 

maximizes the value of information generated, under a given 
set of scenarios on external effects to the process. Optimal 
process design is well known [4], but the optimal design of 
information systems – measurements, actuators, control 
algorithms and data analysis methods – has emerged only 
recently [5-7].   

 
This paper is organized as follows. In Section 2 we 

discuss statistical decision theory briefly as it is the 
framework within which we analyzed value generated. 
Furthermore, we discuss the generic problem of 
measurement setup and state that the relationship to optimal 
decision making is via specifying, how accurately the 
process state and/or product quality must be known.  Section 
3 discusses a practical way of designing the measurement 
setup and how that relates to optimal estimation in linear 
case. In Section 4 we formulate a case at papermaking 
process in which the task is to find an optimal laboratory 
measurement scheme to support quality management and 
discuss this case with real-life data. In Section 5 we discuss 
how our results can be generalized to other cases in process 
industries.    

2.   STATISTICAL DECISION THEORY 

Decisions are based on available information about the 
system – measurements, silent information and a priori 
information. Decision making can be analyzed as an 
optimization task, a deterministic, stochastic, multigoal or 
game problem.  

 



The formal statistical decision making problem consists 
of the following elements: a priori information about the 
state of the system, models of measurements, model for 
predicting the consequences of decision alternatives, and the 
utility of the consequences as the objective. To define these 
elements, descriptions for the system state (x), set of 
consequences (c) and set of allowable decisions (actions, a) 
must be set up. Note that x, c and a, all should be considered 
vectors, and that they may be past time series (x) or future 
time series (c,a). Figure 1 presents the decision making task: 
given the measurement x(obs), and  the probabilistic elements, 
what is the action that yields maximal utility for DM [8,9]. 
 

 
Figure 1. Action - consequence scheme of system. 

 
Decision maker (DM) knows the state of the system, x, 

only probabilistically through uncertain measurements and 
possibly through some a priori information. The 
consequence c of the action a, given that system state is x, is 
known probabilistically. DM evaluates the system 
performance in terms of consequences. The value (utility) of 
the consequence to the decision maker, u(c) uniquely 
determines the goodness of any action a – including the 
DMs attitude towards risk, assuming DM is rational. 

 
Formally, the elements of a priori information, 

measurement models and prediction models are then, 
respectively, the probability distributions: 
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Here x(obs)  refers to the measured value of x. The 
probability distribution of consequence c, given that x(obs) 
has been measured and DM would decide a is then 
according to Bayes formula [10,11] 

 

 
( )

( )

( ) ( )
| ,

( ) ( ) ( ) ( )
| , |

( )

( | , )                                            (2)

* ( | , ) ( | ) ( )

obs

obs

pred obs
C a x

pred meas obs ap n
C a x xX x

domain X

f c a x

N f c a x f x x f x d x

=

∫
  

where N is a normalization factor and n is the 
dimensionality of system state space description.  
 

The optimal decision is the one that maximizes the 
expected utility, and the corresponding expected utility is 
the measure of performance [7-9, 12]: 
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Defining the objective of decision making, and in 
particular the attitude towards risk, is quite often the main 
challenge when formalizing operational decision making 
about production in papermaking and in other industrial 
processes. The most general approach to attitude towards 
risk is through a utility function. For a rational decision 
maker the utility function u(c) is guaranteed to exist, but its 
most general identification method through finding certainty 
equivalents of “gambling cases” [6] is tedious and often not 
intuitive for the decision maker.  

 
The setup of measurements affects the optimal expected 

utility U*(x(obs)) through how accurately the state is known 
when measurement x(obs) is made. Assuming that there is no 
measurement bias, this accuracy can be characterized by Σxx, 
the covariance matrix of measurement uncertainties. Hence 
we may write U*(x(obs), Σxx). In order to achieve an accuracy 
Σxx a (life-time, discounted) cost c(Σxx) is caused. When 
designing a measurement setup, we assume that there will 
be a number of decision making situations, each with their 
specific action-consequence model and utility. A scenario 
occurs with frequency pi, and the corresponding optimal 
utility, if measurement x(obs) is made, is Ui*(x(obs)). 
Furthermore, for each scenario, we can assess the a priori 
probability distribution of observing x(obs) to be fi(x(obs)). 
Then the design problem reduces into finding the optimal 
measurement accuracy maximizing the lifetime “profit”: 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Σ−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
Σ

=Σ

∑ ∫
=Σ

)()(),(*maxarg
1 )(

)()()(*

*

xx

I

i Xdomain

obsnobs
ixx

obs
ii

xx

cxdxfxUpT
xx

(4) 

 
where T is the life time of the system and we have assumed 
that utility has been expressed in units comparable to those 
of costs. 
 

Here we have considered only the direct effect of 
measurement setup (and accuracy) on value generated. Quite 
often the prediction model (1c) is identified and updated on 
the basis of the very same measurements. The better the 
accuracy of measurements the more accurate are the models 
and the better optimal utility in (3) can be achieved. 
Similarly, the a priori information about system state is 
based on long term statistics of the same measurements: the 
more accurate the measurements, the more accurate the a 
priori information and the better the decisions. The 
accumulating nature of this accuracy leads to complex 
discounting questions. Hence, we choose to neglect these 
indirect effects throughout the rest of the paper and 
concentrate on the direct effect only.   
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The measurement setup optimization described in (4) is 
extremely difficult to carry out in practice. We need to 
specify all decision making situations to arise during the life 
time of the system, their frequencies, and the utilities and 
prediction models associated with them. However, we 
should bear in mind that similar analysis is the basis of 
optimal process design and should thus be the goal of 
optimal measurements system design as well.  

 
3.   MINIMUM-COST MEASUREMENT SETUP FOR 
SPECIFIED ACCURACY OF STATE INFORMATION 

The analysis above shows that optimizing the 
measurement setup is equivalent to finding the optimal 
accuracy, as described with Σxx. If we cannot solve the 
formal optimization problem (4), we may first seek to find 
“sufficient” accuracy for information about the system state 
through process expertise and then analyze by which 
measurement setups this accuracy is achieved and which of 
these setups is the one with lowest costs.  
 

A measurement setup determines which measurements 
are to be made and when. In accordance with the analysis in 
Section 2 we shall consider that measurement setup is a 
measurement policy: the measurements are made at regular 
intervals independent on which are the measured values. 
However, we note that this could be further expanded for 
finding conditions for ad hoc measurements when the 
decisions are highly sensitive to the system state.  

 
When estimating the system state the correlations 

between system sate variables can be used reduce the 
number of measurements to be made and hence to reduce 
measurement costs. The elements in the measurement setup 
analysis are depicted in Figure 2.  
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Figure 2.  Measurement setup analysis scheme. 
 
Next we shall consider the following case 
- a priori information: system state is multivariate 

normally distributed, ),(~ ΣµnNX ; no other a 
priori information 

- measurement description: all state variables can be 
measured, the measurements are unbiased and 
distributed according to ; the 
description of any subset of measurements is 
obtained by marginalizing the full distribution with 
respect to the measurements not made. 

),(~|)( CxNxX n
obs

Let us assume that we have analyzed the tasks that DM 
will be facing assisted with the measurement information 
system. With human experts we have concluded that the 
quality of decision making requires that at all instances the 
largest allowable uncertainty in state variable xi is σi

(c):  
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In order to achieve the required accuracy, we may 

choose to measure once or several times some of the quality 
parameters and to estimate the other on the basis of the 
measurements made and the a priori correlations between 
the quality parameters. Assuming we know the cost 
associated to each of the measurements, we then may solve 
for optimal laboratory set up. 

 
When the joint probability distribution of system state is 

multivariate Gaussian, we know from optimal estimation 
theory [13] that dividing the quality parameters into two 
groups, x=[x1 x2] and measuring x1 with measurement errors 
having a multivariate normal joint probability distribution 
X1

(obs) ~ Nd(x(1),C11), the estimates for x2 and the covariance 
matrix describing their uncertainties are given by 
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Here Σ11 is the submatrix of Σxx for variable set x1, and 
respectively for other Σij and µi. 

 
The diagonal elements of the covariance matrix of 

estimates, Σii
(post), give the left hand side of equation (5). 

Then we may proceed to solve for the lowest cost laboratory 
setup satisfying the constraint of equation (5). If we repeat 
some of the measurements of x(1), this affects only the 
matrix C11 in the analysis above. Therefore measurement 
setups of repeats are also solved with the same approach, or 
formally: 
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When the a priori distribution is not Gaussian, the 

methods of nonlinear estimation need to be applied. 
However, following the principle outlined above. 

 



The analysis above solved which measurements are to be 
made when only a priori information was the statistical 
dependence between the state variables. Therefore, it does 
not give us any information about how often the 
measurements are to be made. In process management, we 
on one hand the requirement that condition (5) must be 
satisfied at all times and on the other hand we have the 
additional a priori information form  previous measurements 
and the state estimate based on those. Indeed, a need for new 
measurement arises, because this information no longer 
satisfies the condition (5). 
 

 The estimation theory provides the uncertainty of the 
estimate immediately after the measurement is made. It is 
intuitively obvious that as time progresses and now 
measurements are made, the estimate can still be considered 
as the estimate of the process state, but the uncertainty 
increases over time. The approach requiring least knowledge 
about the process is to assume that the process state 
undergoes a random walk so that the estimate uncertainty 
increases over time as [14-17]: 
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where tn is the instant when the nth measurement/estimation 
was made and Dii is the diffusion parameter of the random 
walk of process state. 
 

With the assumption of equation (8), estimation method 
(e.g. equation (6)) and constraints, equation (5), we may 
formulate an optimization problem: which measurement we 
need to make and how often (interval τ*) to keep the 
knowledge about the quality within the required accuracy: 
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Although defining the constraint for uncertainty (5), is 

extremely challenging for practical decision makers and the 
cost structure of making measurements may be much more 
complicated than each measurement having its cost 
independent from possible other measurements made at the 
same time, we claim the approach practical. We shall now 
proceed in applying the approach to analysis of quality 
management and related laboratory activities at a paper mill.  

 
4.  QUALITY MANAGEMENT AT A PAPER MILL 

In process industries such as papermaking the quality 
management is commonly based on three level hierarchical 
measurement structure: accurate but costly and infrequent 
laboratory measurements, automated quality analyzers 
sampling more frequently and mimicking laboratory 
analyses, and indirect but frequent on-line measurements for 

automatic control. The decisions supported with this 
information can be divided into three categories: continuous 
process and quality management, special actions, and 
configuration of the measurement information system itself.   

 
At paper mills the three decision categories supported 

are active quality control through broke management and 
apportioning raw materials, detecting off-specifications 
products to be rejected, and calibration of on-line quality 
sensors. The accuracy constraints for quality information (5) 
can be derived from analysis of these decisions. 

 
Hierarchy of measurements at paper mills consists of 

frequent on-line measurements and more accurate laboratory 
analysis. Between those the mills have laboratory analyzers 
that are like robots acting quite well according to the 
laboratory analysis standards. Measuring frequency of 
analyzers is usually once per machine reel, or 1-3 times an 
hour, whereas laboratory analyses are made at most 3 times 
a day. However, laboratory analyzers are less accurate. The 
hierarchy can be used as validation stairs or use laboratory 
analysis results to directly validate on-line measurements. 

 
The laboratory activities should be derived by analyzing 

in which decisions and how the data will actually be used. 
There are only a few mills that have carried out such an 
analysis, and no mills that have applied decision analysis to 
specify how accurately the measured parameters should be 
known. 

 
As a particular case we consider the management of 

optical properties of paper. Brightness, opacity and L-a-b 
color coordinates are the optical quality parameters of paper. 
The optical quality specifications of printing paper grades 
set by customers are tight as the visual appearance of printed 
products hinges on these quality parameters. The optical 
properties are well standardized and there exist laboratory 
devices of high accuracy to measure these parameters. 
However, such laboratory activities are labor intensive and 
also require investing in devices and systems. These 
properties can be measured with automated quality 
analyzers that have similar investment costs but the 
operational costs per sample are much lower. The practices 
of combining laboratory analyses and automated quality 
analyzers has been developed over time into their present 
form, and it may be questioned whether they are close to 
optimal. Should a green field production line be built, how 
should the laboratory activities be set up?  

 
The optimal measurement setup of optical quality in 

paper is based on analysis of quality measurement data from 
a paper mill, over six months period from both a laboratory 
analyzer (27 quality measurements) and laboratory analysis 
(15 quality parameters). The analysis concentrated on one 
paper grade only. Cost of availability and operation for 
laboratory analyzer is same regardless of amount of quality 
parameters measured. Laboratory analysis is labor intensive 
and cost of availability and operation varies between quality 
parameters. The target is to find out if laboratory analyses 
are needed at all, and if they are needed, how often they 



must be made to maintain the accuracy of optical quality 
information. 

 
Following linear optimal estimation we divide quality 

parameters into two groups x = [x1 x2] and measuring x2 
generate the estimates for x1.  

 
We define the quality factor Qi of measurement 

information as  
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so that  the constraints (5) are expressed as Qi <1.  
 

Objective was to find correlating quality parameters 
between these two – laboratory analysis and laboratory 
analyzer – methods and to find the group of quality 
parameters that can be estimated using measurement results 
from laboratory analyzer only, thus reducing the laboratory 
work. After that labor intensive laboratory analysis can be 
focused to those quality parameters that cannot be estimated 
using this model and are needed  

 
Data was divided into two parts; first part (3 months) 

was used to estimate the optimal set of measurements and 
other part (the next three months) to validate the quality 
parameter estimation. All 27 of laboratory analyzer quality 
parameters were used in estimation. Figure 3 shows four 
histograms of actual optical quality parameters (laboratory 
analysis, black) and estimated optimal quality parameters 
(from laboratory analyzer, grey). The unexplained 
percentage of variance per estimated quality parameter is: 
[0.0875    0.1186    0.1772    0.1709]. As (σi

(c))2 tends to be 
0.25..0.01 of total variance, we conclude that the first two 
quality parameters are ones that may be estimated with 
single analyzer results, whereas the other two not.  
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Figure 3. Histograms of four quality parameters, 
(laboratory analysis, black) and estimated quality 
parameters (from laboratory analyzer, grey).  

 

The quality parameters that cannot be estimated only 
with quality analyzer results, must be measured in 
laboratory. There is a diffusion constant, see (8), associated 
with laboratory information. The diffused laboratory 
information and the information based on analyzer results 
can be fused to reduce the number of laboratory analyses. 
Our preliminary analysis shows, however, that the present 
practice on such measurements is close to optimal. 

 
Figure 4 shows four histograms of quality parameters 

(laboratory analysis, black) and estimated quality parameters 
(from laboratory analyzer, grey) using validation data set. 
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Figure 4. Histograms of four quality parameters, 
(laboratory analysis, black) and estimated quality 
parameters (from laboratory analyzer, grey) using 
validation data set. 

 
The analysis of the validation shows in general that the 

predictive power of laboratory analyzer, using the same 
covariance matrix Σ12, has degraded substantially. 
Therefore, occasional laboratory measurements are needed 
to dynamically validate the covariance matrix. The 
frequency of measurement is, according to our preliminary 
analysis, much lower than current practice. Hence, we have 
identified an opportunity to reduce laboratory work and 
focus it to where it generates most value. 

 
The analysis with the presented framework – formal or 

expert derivation of accuracy of quality information 
required, optimal estimation analysis of opportunities to 
replace labor-intensive measurements by estimates, and 
dynamic degradation analysis to derive frequency of 
measurements -  pinpoints critical measurements and 
concentrates more effort on them. In most cases the analysis 
process itself is of high importance: it provides a shared and 
documented view on performance requirements for the 
quality measurement activities; the accuracy of information, 
the availability and the costs related.  Knowledge about the 
engineered accuracy and reliability of the measurements 
increases the operators trust at the quality parameters, thus 
supporting and improving decision making. 

 
 



5.   CONCLUSIONS 

 
Measurements are uncertain and everything derived from 

them is uncertain. Decisions are always made under 
uncertainty. Value of measurement information is 
determined by the decisions made based on them.  

 
In this paper we have outlined a framework for 

determining the value of measurement information and 
designing a measurement information system – what to 
measure and how often - based on the value generated under 
a defined set of scenarios. The framework relies on that we 
have explicitly defined utility for each decision making 
situation and that we have explicitly defined scenarios of 
external effects on the system, including their frequency of 
occurrence. Admittedly, these are strong – in most cases 
unrealistic – assumptions. Therefore we noted that the result 
of optimal design of measurement information system can 
be expressed as optimal accuracy of measurement 
information of state, and that such optimal accuracy can be 
obtained from human experts, in addition to formal 
approach. 

 
We discussed the framework in a practical case of 

quality management at paper mills. We showed a potential 
for replacing some of the laborious laboratory measurements 
by estimates based on results from an automated laboratory 
analyzer. However, we also noted that for such an 
estimation to work over long period of time, occasional 
laboratory measurements must be made to keep the estimate 
of covariance matrix reliable. When outlining the framework 
we restricted ourselves to direct value generated by the 
measurements, i.e. how much the measurement improves 
decision making by providing more accurate information 
about the system state. The updating of covariance matrix is 
an example of indirect value generation: the measurement 
improves how we derive state information from other 
measurements. The framework will be expanded to tackle 
the indirect effects as well. 

 
Decision making is difficult task, which can be made 

easier with more accurate and focused measurements. Effort 
for making measurements can be focused when measuring 
of every parameter is not needed. Thus more time and 
energy can be used for making those few measurements and 
thus also calculated parameters become more accurate. 
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