ASSESSING UNCERTAINTIES RELATED TO LINEAR CALIBRATION CURVES: A CASE STUDY FOR FLAME ATOMIC ABSORPTION SPECTROMETRY

Queenie Siu Hang Chui, Jaim Lichtig
Abstract:
Least square linear regression is widely used in analytical chemistry. In practice a linear relationship between substance content and measured value still has been assumed based on the correlation coefficient criterion, although not recommended. Textbooks provide the necessary formulas for the fitting process, based on the assumption that there is no error in the independent variable. In practice the ordinary least squares (OLS) textbook procedure is used even when the previously stated assumptions are not strictly fulfilled. In this paper, how to validate the calibration function is dealt with in detail using as an example based on measurements obtained for cadmium determination by flame atomic absorption spectrophotometry (FAAS). Assessing uncertainties related to linear calibration curves is also discussed. Considering uncertainties of weights and volumetric equipment and instrumental analytical signal it is observed that the most important factor that contributes to the final uncertainty is the uncertainty of the calibration function.
Keywords:
uncertainty, calibration function, flame atomic absorption spectrophotometry
Download:
PWC-2006-TC1-013u.pdf
DOI:
-
Event details
Event name:
XVIII IMEKO World Congress
Title:

Metrology for a Sustainable Development

Place:
Rio de Janeiro, BRAZIL
Time:
17 September 2006 - 22 September 2006